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ABSTRACT
Reconstruction-based super-resolution algorithms use either
sub-pixel shifts or relative blur among low-resolution obser-
vations as a cue to obtain a high-resolution image. In this
paper, we propose a super-resolution algorithm that exploits
the information available in the low-resolution observations
due to both sub-pixel shifts and relative blur to yield a better
quality image. Performance analysis is carried out based on
the Cramér-Rao lower bound. Several experimental results on
synthetic and real images are given for validation.

Index Terms— Super-resolution, image enhancement, im-
age resolution, image reconstruction, image sequence analy-
sis

1. INTRODUCTION

Super-resolution is the method of obtaining a high-resolution
(HR) image from several low-resolution (LR) observations
of the same scene. The main idea behind super-resolution
is dealiasing and deblurring. One class called motion-based
techniques [1, 2, 3] assumes that there is a relative motion be-
tween the scene and the camera. Multiple, sub-pixel shifted
LR images thus captured carry additional information about
the scene which is then used to obtain a high-quality image.
The quality of reconstructed image depends on the relative
shifts among the observations. A second class called motion-
free super-resolution [4, 5], on the other hand, make use of
the information available from several defocused observations
(blurred to different extents) to undo the effects of blurring
and aliasing. They assume that there is no relative motion
among the observations thus doing away with the correspon-
dence problem. Here, the quality of the super-resolved image
depends on the relative blur among the observations [4].
Existing motion super-resolution algorithms assume evenly

spaced motion vectors [6] such that the LR images adequately
sample the high-resolution image. Further, an adequate num-
ber of LR observations [7] are assumed to be available for
reconstruction. In addition, they assume that accurate motion
parameters are available. Blurring (if any) introduced either
due to motion or camera defocusing is assumed to be same
for all the observations and is usually treated as unwanted. A

recent work [8] concluded that blur introduced due to camera
motion limits super-resolution quality.
In a real scenario, motion super-resolution is confronted

with the problem that the movement of either the camera or
the object is not controlled. Hence, the assumption of avail-
ability of adequate number of evenly spaced observations is
not realistic. Also, depending on the distance of the camera
from the scene, the sub-pixel shifted observations may suffer
from different amounts of blur. Knowing the fact that rel-
ative blur plays a role in motion-free super-resolution, it is
then interesting to ask whether relative blurring can be used
to our advantage in motion super-resolution also. Intuitively,
one can say that relative blur among the observations could be
used as a cue for better reconstruction, particularly when the
motion shifts are not good and also for achieving higher res-
olution factors from less number of observations. In this pa-
per, we show that this is indeed true. The Cramér-Rao lower
bound (CRLB) for the covariance of the error in the estimate
of the super-resolved image is derived to theoretically vali-
date our argument. The image to be super-resolved is mod-
eled as a Markov random field (MRF) and the maximum a
posteriori (MAP) estimate of the image is derived. Several
simulations on 1D sequence and images (both synthetic and
real) are given to demonstrate the role of relative blur in the
motion super-resolution problem.

2. PROBLEM FORMULATION

The relation between the lexicographically ordered LR obser-
vations and the original HR image can be expressed as

yr = DHrWrx + nr, 1 ≤ r ≤ m (1)

Here, x is the original HR image of dimension N1N2 x 1,
yr is the rth LR observation of dimension M1M2 x 1, D is
the down-sampling matrix of dimensionM1M2 xN1N2, and
Hr is the camera defocus blur matrix of dimension N1N2 x
N1N2. Existing super-resolution techniques assume the cam-
era defocus blur to be Gaussian (an approximation) and same
for all the observations (Hr = H). In this work, we assume
theHrs to be different for each observationwhich can be used
as an additional cue for super-resolution. Wr matrix repre-
sents geometric warping and is of dimension N1N2 x N1N2
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for the rth frame. The term nr is the noise in the rth frame
which is assumed to be Gaussian, independent, and identi-
cally distributed. We assume that there are m number of LR
observations i.e., 1 ≤ r ≤ m.
Eq. (1) can be expressed in matrix-vector form as

y = Ax + n (2)

Here, y = [y1 y2 · · · ym]T , the system matrix A=[A1, A2,· · ·
Am]T where Ar = DHrWr, and n = [n1 n2 · · ·nm]T . The
matrixAr is of dimension (M1M2×N1N2) and henceA is of
dimension (m ·M1M2)×N1N2. Whenm = N1N2/M1M2,
the system matrixA is a square matrix of sizeN1N2×N1N2.
Solving for x in Eq. (2) given the observations y requires

that the system matrix A be invertible. If the down-sampling
matrixD and the blur matrix Hr are assumed to be the same
for all the observations, the matrix A will be invertible only
when the warping matricesWr are different. In the event that
any two observations have either identical or very close mo-
tion shifts (which is a possibility in a real scenario), the matrix
A becomes ill-conditioned. If the Hrs are different, then rel-
ative blur among the observations can be expected to play a
major role in reducing the condition number of the system
matrix so as to yield a better output.

3. ROLE OF BLUR

Blurring is inherent during the formation of the image due
to low-resolution sensor point spread spectrum (PSF). It may
also be present due to relative motion between the camera
and the scene. In the case of real aperture cameras, the de-
focus blur at a point is a function of depth of the scene [9].
If the scene is planar, the blur will be space-invariant but de-
pending on the distance from the camera, the observations
may have different blur. For a 3D scene, the blur PSF will
be space-variant. Estimation of blur kernel even of a smaller
size of say 3×3 involves estimation of 9 unknowns and hence
is a very difficult task. Usually the blur will be modeled as
parametric either as pill box or Gaussian [9]. In this paper,
we assume that the defocus blur is space-invariant which is
modeled as circularly symmetric 2-D Gaussian with blur pa-
rameter σ. Since we assume sub-pixel motion, motion blur is
neglected.

3.1. Cramér-Rao Lower Bound

We now quantitatively analyze the effect of relative blur on
the accuracy of the estimate of the reconstructed super-resolved
image. The analysis is based on the Cramér-Rao lower bound
(CRLB) [10], which provides a fundamental limit on the vari-
ance of the error attainable with an estimator for an unknown
parameter. The CRLB expresses the minimum error variance
of any estimator x̂(y) of x in terms of the conditional density
p(y|x) of the data. We now derive the CRLB for the motion
super-resolution problem.

For an unbiased estimator, the CRLB [10] on the covari-
ance of the estimate of x is given by

E[(x − x̂)(x − x̂)T ] ≥ J−1 (3)

where E is the expectation operator, x̂ is an unbiased estimator
of x, and

J = −E
[

∂2

∂x2
log p(y|x)

]
(4)

Since the nr’s are assumed to be Gaussian and independent
with variance σ2

n
, we have
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1

(2πσ2
n)m·

M1M2

2

exp

[
−

m∑
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2σ2
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Hence

J = −E
[

∂2

∂x2
log p(y|x)

]
=

1

σ2
n

m∑
r=1

AT

r Ar (7)

and the CRLB turns out to be

E[(x − x̂)(x − x̂)T ] ≥ σ2

n

(
m∑

r=1

AT

r Ar

)
−1

(8)

Invertibility of the matrix
∑

m

r=1
AT

r
Ar depends on the warp-

ing matricesWr and the blur matricesHr. From Eq. (8), for
a given noise variance, the CRLB depends on the condition
number of

∑m

r=1
AT

r
Ar. Hence, when the motion vectors are

not evenly spaced or the observations have identical motion
shifts, relative blur among the observations can contribute to-
wards reducing the condition number.

4. EXPERIMENTAL RESULTS

In this section, we study the effect of relative blur on the qual-
ity of the super-resolved output. Initially, to demonstrate the
role of blur, the trace of the right hand side of Eq. (8) (a
scalar performance bound [6]) for different relative blur was
plotted for the case of a 1D signal of length 66 samples. We
used the resolution factor to be 3 and the noise standard devi-
ation σn = 2.25. Three LR observation sequences with shifts
of [0 0.5 0.6] were used for the simulation. The third ob-
servation was intentionally chosen to be close to the second
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Fig. 1. CRLB versus relative blur.
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Fig. 2. A 1D example. Magnitude spectrum of (a) original se-
quence and (b) an LR sequence. Spectrum of super-resolved
sequence with (c) no relative blur and (d) good relative blur.

one. The blur parameters of these observations were varied
from [σ1 = 0.02, σ2 = 0.02, σ3 = 0.02] to [σ1 = 0.17,
σ2 = 0.77, σ3 = 1.52] by increment of [0.01, 0.05, 0.1] in
each iteration. The plot of CRLB versus the iteration number
(corresponding to different relative blur) is shown in Fig. 1.
It can be seen from the figure that there exists an optimal rela-
tive blur at which the mean squared error (MSE) is minimum
(in this case the minimum occurred at [σ1 = 0.09, σ2 = 0.37,
σ3 = 0.72]). The plot also demonstrates that beyond a certain
limit, relative blur does not help in better reconstruction be-
cause deblurring capability becomes poor when the absolute
blur is very high.
To get additional insight, we initially conducted simula-

tions on a 1D sequence. We considered a single tone sinu-
soidal signal of frequency 40 Hz sampled at 150 Hz as the
original sequence. Fig. 2(a) shows the plot of the magnitude
spectrum of the sequence. Three LR sequences were gener-
ated from this sequence by down-sampling by a factor of 3
and warping by [0 0.5 0.5] samples. Fig. 2(b) gives the mag-
nitude spectrum of the LR observation showing the aliased

(a) (b)

(c) (d)

Fig. 3. A synthetic example. (a) Original image. (b) Inter-
polated result. Super-resolved image with (c) no relative blur
(MSE = 110.81) and (d) good relative blur (MSE = 35.04).

frequency. The second and the third sequence are intention-
ally assumed to have same shifts rendering the system matrix
A to be non-invertible when the blur kernels are assumed to
be the same for all the observations. The blur parameter for
the observations is assumed to be [0.4 0.4 0.4] and an inverse
in the least square sense yields an output whose spectrum is as
shown in Fig. 2(c). It can be observed that there is no dealias-
ing in this case. We then introduced relative blur among the
observations by choosing the blur parameter as [0.4 0.6 0.8].
The magnitude spectrum of the reconstructed signal is plot-
ted in Fig. 2(d) which is the same as the original spectrum in
Fig. 2(a). This experiment clearly demonstrates that relative
blur plays an important role in dealiasing in motion super-
resolution.
Next, we carried out simulations on a synthetic image.

A high-quality “Text” image of dimension 180 × 240 pix-
els (Fig. 3(a)) was used to generate 4 LR observations by
down-sampling by a factor of 2. The sub-pixel motion pa-
rameters were chosen to be (0, 0), (0, 0.5), (0.5, 0), and
(0.5, 0). Here again, the shifts for the third and fourth frame
were chosen to be same. Fig. 3(b) shows the bilinearly in-
terpolated result. As expected, interpolation can not recover
the high-frequency components. The super-resolved results
corresponding to two different sets of blur parameters: [σ1 =
1.5, σ2 = 1.5, σ3 = 1.5, σ4 = 1.5] and [σ1 = 0.8, σ2 = 1.2,
σ3 = 1.4, σ4 = 1.6] are shown in Figs. 3(c) and 3(d), respec-
tively. The result with good relative blur is much better than
the one with no relative blur. The mean squared error (MSE)
for the case of good relative blur was much less than that with
no relative blur.
Finally, we considered the important case of real data. An

LV150-Nikon industrial microscope with a 2.5X objective
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Fig. 4. A real example. (a) An LR image. Super-resolved image with (b) no relative blur and (c) good relative blur.

lens and a camera attached to it was used for capturing images
in the lab. A planar object with text written on it was placed
on the experimental-bed of the microscope and a small area of
the object was imaged. The goal was to super-resolve text us-
ing the observations from the microscope. The experimental-
bed was moved gently using theX-Y movement arrangement
to introduce sub-pixel motion shifts while Z movement was
used to introduce different defocusing among the observa-
tions. Several low-resolution observations of size 96 × 128
pixels of the object were captured. Fig. 4(a) shows one of the
LR observations. Four LR observations captured with same
defocus blur were then used to obtain a super-resolved image
with a resolution factor of 3. The motion parameters were
estimated using the technique proposed in [11]. By know-
ing the camera parameters and the distance of the object from
the lens, the space-invariant blur parameter σ was determined.
Ideally, we need 9 images for a magnification factor of 3 [7].
Hence the reconstructed result (Fig. 4(b)) with only 4 obser-
vations is not very good. We then used 4 sub-pixel shifted
observations captured with different defocus blur. The resul-
tant super-resolved image is shown in Fig. 4(c). Note that
the quality of the output is very good with sharper features as
compared to the earlier case.

5. CONCLUSIONS

A motion super-resolution technique which exploits the rel-
ative blur among the sub-pixel shifted LR observations was
presented. When the motion vectors are not uniformly spaced
or the number of observations is inadequate, the defocus in-
formation among the observations can be exploited to yield a
good quality super-resolved image. Several synthetic and real
results were given to demonstrate the role of relative blur.
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