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ABSTRACT

We propose a new set of kernels to simplify the design of fil-

ters for image interpolation and resizing. Their properties are

defined according to two parameters, specifying the width of

the transition band and the height of the first sidelobe. By

varying these parameters we can get very good approxima-

tions of many commonly-used interpolation kernels. Further-

more, because the Fourier transforms of these kernels have

very fast decay, they can also be used for downsampling.

Index Terms— Interpolation, image sampling, multidi-

mensional digital filters

1. INTRODUCTION

Image resizing and interpolation (e.g., for rotation) are two

of the most useful image processing operations, and conse-

quently there is a great amount of literature on the subject [1]–

[7]. However, many imaging professionals find the task of

sorting out and implementing the most appropriate method

quite challenging, due to the great number of possibilities, and

of conflicting opinions. It is common to settle for some very

simple approaches which were once meant to reduce com-

plexity, or adopt one type that was shown to be excellent for

one application, without knowing that it may be suboptimal

for other applications.

For instance, even in commercial products we find the

mistake of using interpolation kernels for downsampling, with-

out the necessary lowpass filtering. A less serious, but also

common mistake, is to use for downsampling low-order fil-

ters which can be quite good for interpolation, but have much

worse properties when time-scaled for resizing.

What is still missing is an approach that is more conve-
nient and easy to use, with less emphasis on computational

complexity, and that yields high image quality. For that pur-

pose we propose a family of parameterized functions that are

simple, and are designed with enough versatility so that well-

known kernels can be very closely approximated by simply

using the proper parameters. This way it is easy to experiment

and identify the parameters that are best suited to a certain

type of image, without having to understand and implement

several methods.

This paper is organized by first defining the proposed fam-

ily of functions, and some of their basic properties. Next, we

present a set of features that are desirable for interpolation and

resizing kernels, and explain how well the proposed functions
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Fig. 1. Notation used for interpolation and resizing.

support those features. Finally, we present some results of

finding the approximation to some commonly-used kernels,

show how well these kernels are approximated, and discuss

the extra features of the proposed kernels.

2. INTERPOLATION AND RESIZING KERNELS

We assume that separable filters are used [3], and to sim-

plify the notation we consider only the one-dimensional case.

Fig. 1 shows the basic notation we use: if we have a sequence

of pixel values c[n], and a kernel function h(t), then the value

at point t is defined as

ĉ(t) =
∑

k∈Sh

b · c[k + �t�]h(b · [t − k − �t�]), (1)

where b is the normalized bandwidth of the signal. When

downsampling the image b should be equal or smaller than

the reduction factor, which means that 0 < b < 1. When the

image is upsampled or rotated, we have b = 1.

The family of functions that we propose for interpolation

and resizing has only two parameters, χ and η, and is defined

by

hχ,η(t) = sinc(t) cosh
(√

2ηπχt

2 − η

)
e−[πχt/(2−η)]2 (2)

where sinc(0) = 1 and sinc(t) = sin(πt)/(πt), when t �= 0.

The Fourier transforms of these functions are

Hχ,η(f) = Pη

(
(2f + 1)(2 − η)√

2χ

)
−Pη

(
(2f − 1)(2 − η)√

2χ

)

(3)

where

Pη(f) =
eη/2

√
2π

∫ f

0

e−φ2/2 cos(
√

ηφ) dφ (4)
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Fig. 2. Impulse and frequency responses for selected parameters: (a) χ = 0.2, (b) χ = 0.3, (c) χ = 0.4.

Fig. 2 shows some examples. Note that all graphs have

|hχ,η(t)| and |Hχ,η(f)| in decibels. We can observe that χ
basically controls the width of the transition band, and η af-

fects the height of the first sidelobe. Also note that H0,η(f)
is the ideal lowpass filter.

While there is no closed-form expression for integral (4)

(related to the complex-valued error function), we used the

time-frequency properties of the functions, and found that it

can approximated with absolute error smaller than 10−16 us-

ing

Pη(f) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/2, f > 8,

f

17
+

22∑
n=1

ψη[n] sin(2ωnf), |f | ≤ 8,

−1/2, f < −8,

(5)

where ω = π/17 and ψη[n] = e−ω2n2
cosh(2ωn

√
η)/(πn).

3. DESIRABLE FEATURES

There are some important features—not all simultaneously

achievable—that are desirable for the functions used for cre-

ating the discrete-time filters.

(a) Flexibility
It is necessary to recognize that different types of images (nat-

ural, medical, synthetic, etc.) have different requirements.

While we have a variety of theoretical tools developed for

the analysis and design of interpolation and resizing filters, in

most cases it is still essential to experiment several filters, and

visually inspect the results.

The proposed kernels are meant to allow imaging profes-

sionals to try different filters more easily. In fact, to make

their performance and visual quality easier to predict, they

can closely approximate other commonly used kernels. Ta-

ble 1 shows some sets of parameters that can be used for these

IV - 218



Table 1. Parameters that approximate popular interpolation

kernels.

Kernel χ η

Lanczos, M = 2 0.414 0.61

Lanczos, M = 3 0.284 0.64

Lanczos, M = 4 0.212 0.65

Lanczos, M = 5 0.170 0.65

Blackman-Harris, N = 6 0.411 0.23

Cubic B-Spline 0.310 0

Mitchell-Netravali, B = C = 1/3 0.550 0.32

approximations, and Fig. 3 shows how good the approxima-

tion can be. (More details in Section 4.)

(b) Intuitive Controls
While experimenting, it is desirable to be able to finely tune

the filter’s response. Some kernels provide very little control,

being defined only for some discrete parameters, like “order.”

Others are defined by parameters related to approximation

theory, which may have limited relation to the properties of

natural images.

We defined the parameters of our kernel in a way that

makes its equations somewhat more complicated, but aim-

ing to make them much more intuitive. The parameter χ is

defined to be the main control for achieving a compromise

between blurring, aliasing and ringing artifacts. If it it too

small, we have nearly ideal filters, which create ringing arti-

facts around edges. If it is too large we certainly have blur-

ring, and some aliasing. The amount of aliasing depends also

on the parameter η, which controls the height of the sidelobe.

These properties can be seen in Fig. 2.

(c) Symmetry and Exact Interpolation
For imaging applications it is necessary to use linear phase

filters, and commonly interpolation functions have even sym-

metry, i.e., h(t) = h(−t). Under the assumption that pixel

values corresponds to samples of a strictly bandlimited sig-

nal, we would like to not change the values that are already

know, and this is achieved when

h(0) = 1, h(n) = 0, n = ±1,±2, . . . (6)

Image signals are certainly not strictly bandlimited, but the

property is still useful because it implies that for all f we

have

Hd

(
ej2πf

)
=

∞∑
n=−∞

H(f − n) = 1, (7)

i.e., we know that the gain for signal plus aliasing always adds

to one. Our kernels satisfy this property because they belong

to the class of functions created by multiplying sinc(t) with

another function.

(d) Good Response with Small Spatial Support
When considering the filtering computational complexity, it

is good to use filters with small numbers of taps. Since in

imaging applications we need to avoid ringing resulting from

lowpass filters with steep transition, good interpolation results

had been obtained with very short filters.

Our kernels were chosen such that hχ,η(t) and Hχ,η(f)
have asymptotic decay as fast as O(e−αt2). Thus, while hχ,η(t)
strictly has infinite support, the very fast decay makes it easy

to find where to truncate the response without significantly

changing the filter’s performance (cf. Fig. 2). This approach

tends to yield somewhat longer filter responses, but it is more

convenient for obtaining downsampling filters, which need to

be more carefully designed.

(e) Good Performance For Both Interpolation and Down-
sampling
One of the most natural requirements in interpolation and re-

sizing is that when applied to an image with a constant pixel

value, it should always create another image with the same

value. This is possible only when we have an exact partition
of unity:

∞∑
k=−∞

b · h(b · [t − k]) = 1, t ∈ [0, 1). (8)

In the frequency domain this corresponds to

H(0) + 2
∞∑

n=1

H
(n

b

)
cos(2πnt) = 1, t ∈ [0, 1). (9)

Interpolation kernels commonly satisfy this property exactly

by having H(0) = 1, and H(n) = 0, n = 1, 2, . . . Others

provide very good approximation with very small values of

|H(0) − 1| and |H(n)|, n = 1, 2, . . .
The problem of using interpolation functions for down-

sampling is that while the condition above is satisfied exactly

for b = 1, it not a good approximation when b < 1. For exam-

ple, the kernel for linear interpolation [5] is clearly inadequate

when b < 1.

Here we see one of the main advantages of kernel hχ,η(t).
With the proper choice of χ and η, the very fast decay guar-

antees that |Hχ,η(1/b)| is very small for b < 1, which means

that it is also good as a downsampling filter.

4. APPROXIMATION OF OTHER KERNELS

Many of the features of the new kernels can be observed by

analyzing versions that have parameters chosen to closely ap-

proximate kernels commonly used for interpolation. Table 1

shows some sets of parameters that can be used for these

approximations, and Fig. 3 shows comparisons of the corre-

sponding Fourier transforms. In Fig. 3 (a) we can observe that

with χ = 0.248 and η = 0.48 we have a response nearly iden-

tical to the Blackman-Harris (N = 6) kernel [1, 5]. Choosing

χ = 0.163 and η = 1.2 produces a response very similar

to the Lanczos kernel (M = 2) [4, § 3] up to its first zero.

After that, Hχ,η(f) produces a wider sidelobe with roughly
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Fig. 3. Fourier transforms of some commonly used kernels and of their approximation with the proposed parameterized kernels.

the same height, but with nearly monotonic decay, instead of

several sidelobes.

Fig. 3 (b) shows a comparison with another Lanczos ker-

nel, with similar results. In part, these results are not very

surprising, since the Blackman-Harris and Lanczos kernels

are based on the sinc(t) function. However, they show that

we can get remarkable control of the properties of Hχ,η(f)
by changing only its two parameters.

Furthermore, the comparison of Hχ,η(f) with the cubic b-

spline kernel in Fig. 3 (b) shows that we can have very good

approximations for other types of kernels too. One important

difference, is that Hχ,η(f) has no sidelobes above –80 dB

when f > 1, which means that it has better partition of unity

when used for downsampling.

We also tested the Lanczos (LZ4), Blackman-Harris (BH6),

and cubic b-spline (CBS) kernels in the 2048 × 2560 image

“Bike” (used in the JPEG2000 tests), chosen because it has

many details and test patterns. First, we upsampled all im-

ages by factor 2.3. In all cases, the images are visually indis-

tinguishable, so we measured the differences between images.

The results, defined as PSNR in dB, are:

Kernel LZ4 BH6 CBS

LZ4-Approx. 51.3 42.6 49.4

BH6-Approx. 43.4 58.3 48.4

CBS-Approx. 47.9 47.3 58.1

The values in the main diagonal show that the images ob-

tained with the kernels and their approximations are indeed

very close. The other values are also large, indicating that

all those kernels produce good results, but the differences are

also clear.

In the second experiment we downsampled the image by

factor 0.3, and obtained similar results.

Kernel LZ4 BH6 CBS

LZ4-Approx. 51.4 38.9 45.6

BH6-Approx. 39.9 56.1 45.2

CBS-Approx. 45.2 44.0 57.0

5. CONCLUSIONS

We have shown that the proposed kernels for image interpo-

lation and resizing can be easily designed, since their two pa-

rameters provide direct control over the most important fea-

tures, which are the width of the transition band, and the side-

lobe height. We also explain that the kernels naturally sat-

isfy many desirable conditions. They yield exact interpola-

tion, both the functions and their Fourier transforms have very

fast decays, and thus the same kernels can produce good re-

sults for both interpolation and downsampling. We tested the

flexibility of the design by presenting sets of parameters that

produce kernels that are very good approximations of kernels

that are well known for their properties and superior image

quality. The differences between the original kernels and the

approximations are evaluated by analyzing the frequency re-

sponse, and also measuring the difference between images re-

sized with those kernels. In conclusion, the new class of ker-

nels provide a very convenient way to test different kernels in

order to identify those that produce the best image quality.
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