
CONDITIONS FOR COLORMISREGISTRATION SENSITIVITY IN CLUSTERED-DOT HALFTONES

Basak Oztan, Gaurav Sharma

ECE Dept., University of Rochester,
Rochester, NY, 14627-0126, USA

{basak, gsharma}@ece.rochester.edu

Robert P. Loce

Xerox Corp., 800 Phillips Rd., M/S 128-27E
Webster, NY, 14580, USA
Robert.Loce@xeroxlabs.com

ABSTRACT

Misregistration between the color separations of a printed image,
which is often inevitable, can cause objectionable color shifts in
average color. We analyze the impact of inter-separation misreg-
istration on clustered-dot halftones using Fourier analysis in a lattice
framework. Our analysis provides a complete characterization of the
conditions under which the average color is invariant to displacement
misregistration. In addition to known conditions on colorant spectra
and periodicity of the halftones, the work reveals that invariance can
also be obtained when these conditions are violated for suitable dot
shapes and displacements. Examples for these conditions are in-
cluded, as is the consideration of traditional halftone configurations.

Index Terms— Color halftoning, clustered-dot halftones, inter-
separation misregistration, lattice theory

1. INTRODUCTION
Color halftone printing typically employs four color separations, viz.
Cyan (C), Magenta (M), Yellow (Y) and Black (K). In several print-
ing systems, these C, M, Y, K halftone separations are sequentially
printed on the paper substrate to produce the color hardcopy output.
Due to variations in the operations within the printing process, for
example, in mechanical paper transport, paper shrinkage, and imager
alignment; some misregistration between halftone image separations
is unavoidable. This misregistration can cause objectionable color
shifts from print to print. In this paper, we consider color shifts in-
duced by inter-separation displacement misregistration in clustered-
dot halftones [1], which constitute the primary method for halfton-
ing for lithography and xerography- the two main technologies for
high volume printing. Specifically, we provide a full mathematical
characterization of the conditions for sensitivity to inter-separation
displacement misregistration.

Color shifts due to inter-separation misregistration are known to
depend on the spectral characteristics of the colorants [2] as well as
the joint spatial characteristics of the halftone separations [3, 4, 5,
6, 7]. Conventionally, it is believed that misregistration insensitivity
is achieved if either the colorants have non-overlapping absorption
bands [2], or if the halftone periodicities meet a “non-singularity”
condition [5]. Our analysis reveals additional situations under which
insensitivity to misregistration is achievable, despite these conditions
being violated. In addition, the analysis provides a comprehensive
framework under which the conditions for insensitivity to displace-
ment misregistration maybe fully understood. The analytic model
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presented here complements the experimental and simulation results
presented earlier [6, 7].

2. COLOR MISREGISTRATION ANALYSIS

Conventional clustered-dot halftones are amplitude modulated (AM)
signals in the sense that different gray levels are reproduced by vary-
ing the size of halftone spots while keeping the periodicity of spots
constant. Color printing is accomplished by halftoning the K indi-
vidual color separations, where K = 4 for the typical CMYK sce-
nario, and printing these in overlay. For our analysis, we model indi-
vidual colorant halftones in terms of a lattice that represents their pe-
riodicity and a spot function that represents the shape of the halftone
dots. The average color is obtained from the spectral Neugebauer
model [8, 9] that computes the average reflectance as the weighted
average of the reflectances of all possible overlays of the colorants
on the substrate - known as the Neugebauer primaries. The weights
in the model correspond to the fractional areas of the Neugebauer
primaries. A change in these fractional areas is the primary source
of color shifts when the colorants are non-ideal. We therefore obtain
our model using these elements and obtain expressions for the av-
erage reflectance spectrum and the fractional areas, which we use in
turn to characterize the conditions under which the average spectrum
is invariant to displacement misregistration.

2.1. Individual Colorant Halftones

A halftone image hk(x) generated for the kth colorant plane of a
constant gray-level contone image can be modeled as the convolu-
tion of a planar lattice denoted by Λk and a binary halftone spot
function denoted by sk(x) [10], where x = [x, y]T represents the
spatial coordinates. Λk represents the 2-D periodicity of the kth

halftone separation and is mathematically defined as [11]

Λk = {Vknk | nk ∈ Z2}, (1)

where Z denotes the set of integers and Vk = [vk
1

... vk
2 ] is a 2 × 2

real-valued matrix, with two 2 × 1 linearly independent vectors vk
1

and v
k
2 as its columns. The vectors v

k
1 and v

k
2 represent a basis

for the lattice Λk and for any point Vknk in the lattice, the vector
nk = [nkx, nky]T is the representation of the point in the lattice
with respect to the basisVk.

The halftone spot function sk(x) is defined within a unit cell of
Λk, denoted by Uk, and takes values 1 and 0 corresponding to the
situation that ink k is, or is not deposited at the position x = [x, y]T .
Displacement misregistration of the kth separation by the vector
dk = [Δxk, Δyk]T is readily incorporated in this representation
by replacing sk(x) with sk(x−dk). The halftone separation hk(x)
can accordingly be written as

h
(dk)
k (x) = sk(x − dk) ∗

∑
nk

δ(x − Vknk). (2)
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2.2. Spectral Neugebauer Model

On a color print, these multiple halftone image separations are over-
laid, typically producing all possible 2K overlay of theK colorants.
The colors associated with each of the 2K primaries are referred
to as the Neugebauer primaries. Using the Yule-Nielsen-modified
Neugebauer model [8], the average spectrum of the printed halftone
is

Ravg(λ) =

⎛
⎝ 2K∑

i=1

aiR
1
γ

i (λ)

⎞
⎠

γ

, (3)

where ai and Ri(λ) are the fractional area coverage and the spectral
reflectance of the ith Neugebauer primary, respectively, and γ is the
empirical Yule-Nielsen correction factor.

In order to obtain expressions for the Neugebauer primary areas,
we first represent these areas in terms of an alternative but equiva-
lent (in the sense that either is obtainable from the other) set of areas.
For notational convenience, in this process, we index each of the 2K

possible combinations of the K colorants by a K-bit binary index
string c = c1 . . . cK , where ck = 1 indicates the presence of the kth

colorant and ck = 0 its absence in the combination. We then de-
note by βk(c) the total fractional area covered by all of the colorants
present in c, with k(c) = k1 . . . km where the indices kj denote
the separation indices (arranged, say in ascending order for unique-
ness). These are distinct from the Neugebauer primaries since the
total fractional areas include areas that are also covered by additional
colorants. Then it can be seen that [7] the (re-indexed) Neugebauer
primary areas {ac1...cK

}cj∈{0,1} are equivalent to the areas βk(c).
Fig. 1 illustrates the ac and βk(c) terms for the K = 3 case with
CMY colorants in order to clarify the definitions of these terms.
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Fig. 1. Relation between Neugebauer primary areas ac and colorant
overlap areas βk(c). (a) shows ac and the corresponding βk terms,
(b), (c) shows the βk(c) terms inscribed by the outlined colors.

Due to the equivalence of the Neugebauer primary fractional ar-
eas in (3) to the areas βk(c), invariance properties with respect to
displacement misregistration established for one are applicable to
the other. We therefore proceed by obtaining expressions for the
areas βk(c).

2.3. Fractional Areas of Colorant Combinations

In order to compute βk(c), consider the overlay of the halftones that
constitute k(c). The function

hk(c)(x;dk(c)) =
∏

k∈k(c)

h
(dk)
k (x) (4)

indicates the spatial locations covered by the colorants k(c), taking a
value 1 if x is covered by the colorants k(c) and 0 otherwise, where

dk(c) = [dk1 , . . . ,dkm ] are the displacement vectors of the indi-
vidual separations that constitutes k(c). Thus, βk(c) is the spatial
average of hk(c)(x;dk(c)).

If each of the matrices V
−1
ki

Vkl
has only rational numbers as

their elements ∀ ki, kl ∈ k(c) the intersection of the lattices
Λk(c) =

⋂
k∈k(c) Λk, is a two-dimensional lattice [12]. The overlay

hk(c)(x;dk(c)) of the constituent halftones in k(c) is then periodic
over this lattice and thus the spatial average is obtained as

βk(c) =
1

|Uk(c)|

∫
x∈Uk(c)

hk(c)(x)dx, (5)

where Uk(c) denotes the unit cell of Λk(c) and |Uk(c)| the area of
this unit cell.

From the Fourier transform properties it follows that

βk(c) = Hk(c)(0), (6)

where Hk(c)(u) represents the Fourier transform of hk(c)(x) com-
puted over the lattice Λk(c). In other words, βk(c) is equal to the
d.c. term of the frequency spectrum of the overlay of the constituent
colorants in k(c). The Fourier transform of (4) yields

Hk(c)(u) = H
(dk1

)

k1
(u) ∗ . . . ∗ H

(dkm
)

km
(u), (7)

where H
(dk)
k (u) represents the Fourier transform of the halftone

image h
(dk)
k (x) and u = [u, v]T denotes the coordinates in fre-

quency space. Let Sk(u) represent the Fourier transform of the
halftone spot function sk(x). Applying the shift and convolution
property of the Fourier transform on (2),H(dk)

k (u) can be written as

H
(dk)
k (u) =

1

| Vk|
Sk(u) exp (−2πjd

T
k u)

∑
nk

δ(u − Wknk),(8)

where the Fourier transform of the comb function
∑

nk
δ(x−Vknk)

takes non-zero values on the elements of the reciprocal lattice of
Λk [11, pp. 23-24][12], which is represented by

Λ
∗
k = {Wknk = (V−1

k )T
nk | nk ∈ Z2}. (9)

Using these results we can write Hk(c)(u) as in (10), which
can only take non-zero values if u =

∑
k∈k(c) Wknk. Let Nk(c)

represent the set {nk1 , . . . ,nkm |
∑

k∈k(c) Wknk = 0}, which in-
cludes the indices of all the frequency vectors satisfying the singu-
larity condition [5]. Then, (6) can be rewritten as shown in (11),
where Nk(c)\{0} denotes the elements in Nk(c) with the exclusive
of the all zero vector 0. Note that only addends indexed by variables
of the summation symbol in (11) depend on the inter-separation mis-
registration amounts.

3. CONDITIONS FOR COLORMISREGISTRATION
SENSITIVITY

Denote by R
(0)
avg and R

(d)
avg the average spectrum of “prints” with

inter-separation displacements 0 (perfect registration) and
d = [d1, . . . ,dK ] (misregistered), respectively. A difference in
these terms represents a misregistration induced color shift1. In this
section we consider the conditions under which these terms differ,
producing sensitivity to color misregistration in the average color.
In (3), there are two factors that affect the value of these terms:

• Spectral reflectances of the Neugebauer primaries,

• Fractional area coverages of the Neugebauer primaries.

1Strictly speaking this is a shift in average spectrum that will typically
produce a corresponding color shift.
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Hk(c)(u) =
1∏

k∈k(c) | Vk |

∑
nk1

. . .
∑
nkm

∏
k∈k(c)

Sk(Wknk) exp
(
−2πjd

T
k Wknk

)
δ

⎛
⎝u −

∑
l∈k(c)

Wlnl

⎞
⎠ (10)

βk(c) = Hk(c)(0) =
1∏

k∈k(c) | Vk |

⎛
⎜⎝ ∏

k∈k(c)

Sk(0) +
∑

(nk1
,...,nkm)∈Nk(c)\{0}

∏
k∈k(c)

Sk(Wknk) exp
(
−2πjd

T
k Wknk

)⎞
⎟⎠ (11)

The former is affected by the spectral interactions of the colorants
(inks) in their absorption bands of the spectra, the latter is a function
of individual halftone separation periodicities, halftone spots and the
inter-separations misregistration as shown in (11). These terms de-
fine conditions under whichRavg is affected by inter-separation mis-
registration as we show in the next sections. We also observe here
that the terms {βk}

K
k=1, corresponding to the total fractional area

covered by the separations are independent of misregistration.

3.1. Spectral Sufficiency Condition

If the colorants are transparent with non-overlapping spectral ab-
sorption bands, it is well known that the resulting color prints have
no misregistration sensitivity [2]. In our analysis this can be seen
by noting that in this scenario, one can represent the reflectance of a
Neugebauer primary formed by the colorants in k(c) as
Rk(c)(λ) = RP (λ)

∏
k∈k(c) (1 − Ak(λ)), where RP (λ) is the re-

flectance of the paper substrate and Ak(λ) is the absorptance of the
kth colorant. For a given wavelength λ, then there exists a single
separation kλ for which the colorant has non-zero absorption at λ.
Using this property, the average reflectance at λ can be written as

R(λ) =
(
βkλ

(1 − Akλ
)

1
γ + (1 − βkλ

)
)γ

RP (λ), (12)

Since the βk terms corresponding to individual colorant sep-
aration fractional area coverages are insensitive to misregistration,
R(λ) is not affected by the inter-separation misregistration. Thus, a
color halftone is insensitive to inter-separation misregistration if the
aforementioned condition is satisfied. However, in most color print-
ing systems the colorants do not obey this condition (for instance,
any pair of colorants including the Black (K) colorant violates this
requirement).

3.2. Periodicity Sufficiency Condition

In Sec. 2.3 we show how the fractional areas of colorant combina-
tions can be computed by using (11). If Nk(c)\{0} is an empty set
for every possible colorant combination k(c), corresponding βk(c)

terms do not depend on the displacements {dk}k∈k(c). Considering
the equivalence between the Neugebauer primary areas and areas of
colorant combinations, this defines a sufficient condition to ensure
the Neugebauer primary areas ac1...cK

and, thus, the average spec-
trum of the printed halftone Ravg(λ) is invariant to inter-separation
misregistration. This condition is termed the non-singularity condi-
tion in [5].

Let us visualize this case by examining the conventional 30◦ an-
gular separation equi-frequency C, M, K halftones, commonly used
in lithographic printing systems. Let V1, V2 and V3, which are
formed by the basis vectors shown on the unit circle in Fig. 2(a),
represent the basis matrices for the lattices Λ1, Λ2 and Λ3 for C,
M and K separations, respectively. We first consider overlay of any
two of these separations- for example C and M. From the frequency
domain basis matricesW1,W2, shown in Fig. 2(b), for the halftone
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Fig. 2. Basis vectors in (a) spatial domain and (b) frequency domain
for conventional C, M, K screens.

separations 1 and 2, it can be readily seen that � n1,n2 ∈ Z2 that
can satisfy W1n1 + W2n2 = 0. Thus, N12 \ {0} is an empty
set, i.e. the overlay is non-singular, and β12 is invariant to inter-
separation misregistration. Similarly, it can be shown thatN13 \{0}
and N23 \ {0} are also empty sets and consequently β13 and β23

are also invariant to inter-separation misregistration. Note that, in
this case βk(c) terms are only determined by the first addend in (11),
which is the multiplication of the d.c. terms in each individual sepa-
ration that constitutes k(c) and, therefore, the statistical randomness
condition assumed by Demichel equations [13] is satisfied.

Next consider the overlay of all three separations. For this case,
we can see that N123 \ {0} is not an empty set and the overlay is
singular. For example, n1 = [−1, 0]T , n2 = [1, 0]T and n3 =
[0, 1]T is a member of N123 \ {0}. Thus, N123 \ {0} has infinite
number of elements and the value β123 now not only depends on the
halftone spots but also the inter-separation misregistrations.

Thus, a sufficient condition that ensures βk(c) is insensitive to
inter-separation misregistration is emptiness of the set Nk(c) which
is equivalent to the non-singularity condition of [5]. In practice for
typical digital printing devices, the addressable device locations are
confined to a rectilinear grid, and the x and y coordinates of the
vectors v

k
1 ,vk

2 are constrained to take values that are multiples of
the corresponding grid spacing along these two directions. Conse-
quently, for digital printing systems the frequency domain lattices
are singular and misregistration invariance cannot be assured based
on halftone periodicities.

3.3. Spot Function Dependence

We observe that if the set Nk(c)\{0} is non-empty, this alone does
not ensure thatR(d)

avg andR
(0)
avg differ, since βk(c) terms are functions

of the constituent halftone spots and the inter-separation misregistra-
tion amounts. Depending on these, inter-separation misregistration
may still have no effect on the average color of the halftone if the
summation in (11) is zero.

To illustrate this, consider the overlay of two separations with

lattices Λ1 and Λ2 with basis matrices V1 =

[
M 0
0 M

]
and
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V2 =

[
M M

M −M

]
, respectively. Define the corresponding half-

tone spot functions s1(x) and s2(x) as shown in Fig. (3) within
the unit cells of the constituent lattices outlined by the dashed lines,
respectively.
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(b) s2(x)

Fig. 3.
Then we see that the terms in the summation in (11), are com-

puted at the frequency coordinatesW1n1 andW2n2 for {n1,n2} ∈
N12\{0} as

S1(W1n1) =
M2

2
sinc

(n1x − n1y

2

)
sinc

(n1x + n1y

2

)
, (13)

S2(W2n2) = M
2sinc

(n2x + n2y

2

)
sinc

(n2x − n2y

2

)
. (14)

In order to compute β12, we should find the indices n1 and n2 for
which

W1n1 + W2n2 =
1

M

[
n1x +

n2x+n2y

2

n1y +
n2x−n2y

2

]
= 0. (15)

The above relation implies that only indices such that both n2x or
n2y are odd or even can contribute terms in N12\{0}. However,
in these cases, the value of the sinc functions in (14) is zero. This
ensures β12 is the multiplication of the d.c. terms in each individ-
ual separations. Therefore, the characteristics of the halftone spots
can define a condition to ensure that Ravg is insensitive to inter-
separation misregistration.

3.4. Invariant Misregistrations

It is readily seen from (11) that if the displacement of the kth sepa-
ration corresponds to a point on the corresponding lattice, the term
d

T
k Wknk is integer valued and the result of the summation is identi-
cal to that for no displacement. This represents the trivial case when
the inter-separation displacements are matched to the separations’
lattice periodicities. Invariance is, however, also achievable for non-
trivial displacements, as we illustrate next.

Consider, again, the overlay of two lattices Λ1 and Λ2. The
value of (11) depends on the multiplicative term
exp

(
−2πj(dT

1 W1n1 + d
T
2 W2n2)

)
. If this term is equal to iden-

tity ∀ (n1,n2) ∈ N12\{0}, then β12 is same as the one computed
for the perfectly registered separations.

Suppose n1,n2 are integers satisfying W1n1 + W2n2 = 0,
thenW2n2 = −W1n1. If (d1 − d2)

T
W1n1 ∈ Z, then the value

of the exponential term is always equal to 1. Now if W2n2 ∈ Λ
∗
2

and −W1n1 ∈ Λ
∗
1, hence w = W2n2 = −W1n1 ∈ Λ

∗
1 ∩ Λ

∗
2

and as vice versa ifw ∈ Λ
∗
1 ∩ Λ

∗
2, then ∃ w = W1n

′

1 = −W2n
′

2

for some n
′

1,n
′

2 ∈ Z and W1n
′

1 + W2n
′

2 = 0. From the def-
inition of the reciprocal lattice it follows that if d2 − d1 is an el-
ement of (Λ∗

1 ∩ Λ
∗
2)

∗, i.e. the reciprocal lattice of Λ∗
1 ∩ Λ

∗
2, then

(d1 − d2)
T
W1n1 is always an integer and thus

exp
(
−2πj(d1 − d2)

T
W1n1

)
is always equal to 1. Since the recip-

rocal lattice ofΛ∗
1 ∩Λ

∗
2 isΛ1 +Λ2, d1 −d2 ∈ Λ1 +Λ2 defines a

sufficient condition to ensure β12 is invariant to misregistration. In
the general case withK colorants, all inter-separation displacements
should be of form dki

−dkl
∈ Λki

+Λkl
for ∀ ki, kl ∈ {1, . . . , K}

to ensure the overlay is insensitive to inter-separation misregistra-
tion.

4. CONCLUSION

The mathematical analysis presented in this paper characterizes the
color sensitivity of clustered-dot halftones to inter-separation mis-
registration. The comprehensive model presented here not only val-
idates known scenarios under which the average color is invariant
to inter-separation misregistration but also illustrates new situations
in which this invariance is obtained for suitable choices of halftone
spot shapes and displacements. This formulation can be applied to
the selection of misregistration insensitive geometries and halftone
spot functions.
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