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ABSTRACT

To reduce the cost and size, most digital still cameras (DSCs) cap-
ture only one color value at each pixel, and the results — color
filter array samples — are then interpolated by a demosaicking
method to construct a full-color image. Many advanced demo-
saicking methods have been proposed recently. However, the high
complexity of these methods could prevent them from being used
in DSCs. In this paper we propose an efficient and effective de-
mosaicking method, which substitutes high-frequency component
of color values in the spatial rather than frequency domain. We
also propose a simple ternary, anisotropic interpolation scheme to
obtain an initial full-color image required in the spatial-domain
high-frequency substitution. Experimental results show that the
proposed method can outperform recent state-of-the-art methods
in terms of both PSNR performance and perceptual results, at the
same time reducing the computational cost substantially.

Index Terms – Color filter array, Demosaicking, Low-pass
filter, Interpolation,

1. INTRODUCTION

To reduce the cost and size, most digital still cameras (DSCs) use
one single sensor overlaid with a color filter array (CFA) to capture
one of the three color values (red, green, blue) at each pixel. Figure
1 shows the most popular Bayer CFA pattern [1]. The two missing
color values of each pixel are then interpolated to construct a full-
color image, a process that is known as CFA demosaicking.

Existing work has shown that substantial correlation among
neighboring pixels allows CFA samples to be demosaicked into a
full-color image using such simple methods as bilinear and bicubic
interpolations. However, these isotropic interpolation methods of-
ten oversmooth edges. An image of better quality can be obtained
by using pixel values along a locally smooth direction, or in other
words, by using a scheme that is anisotropic according to edge di-
rection. The edge indicator can be computed directly from CFA
samples [2] or based on some energy criteria [3]. Although ad-
vanced anisotropic methods may further improve the demosaick-
ing performance, they also increase the computational cost [3].

The other useful property for demosaicking is inter-color cor-
relation. Since color-difference images are generally smooth and
more suitable for interpolation [4], applying interpolation in these
images can lead to better demosaicking performance [5, 6, 3].
In particular, Gunturk et al. found that the high-frequency con-
tents among color planes are strongly correlated, with near-to-1
correlations [7]. Based on this property, they proposed using the
high-frequency wavelet coefficients of green plane, which is more
densely sampled in a Bayer CFA, to construct the less densely sam-
pled red and blue planes [7]. Their method achieves good perfor-
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Fig. 1. Bayer color filter array

mance and becomes a popular benchmark algorithm in CFA de-
mosaicking literature.

However, exploiting inter-color correlation requires as refer-
ence a color plane of full resolution, which is unavailable from
CFA samples and needs to be estimated. The estimation error of
the reference plane affects subsequent demosaicking operations—
interpolation of color differences [4] or high-frequency substitu-
tion [7]. To minimize the impact, some existing work used a large
filter to obtain a more accurate reference plane, such as a filter
size of 11 × 11 in [5] and 21 × 21 in [3]. Some other work iter-
ated the operations (e.g., Li [6] repeated the interpolation in color-
difference images and Gunturk et al. iterated the high-frequency
substitution [7]). All these methods inevitably increase the demo-
saicking complexity, which could prevent the methods from being
used in DSCs due to limited computational resources.

In this paper we propose an efficient and effective method
which comprises a spatial-domain substitution scheme for estimat-
ing the high-frequency information of missing color values (Sec-
tion 2) and a ternary anisotropic interpolation scheme for estimat-
ing an initial full-color image required in the substitution (Sec-
tion 3). Experimental results in Section 4 show that our proposed
method outperforms four recent state-of-the-art methods in both
PSNR performance and perceptual results, while having a much
lower computational complexity.

2. SPATIAL DOMAIN HIGH-FREQUENCY
SUBSTITUTION

We first review the method proposed by Gunturk et al. [7] for
substituting high-frequency information in wavelet domain. Their
method exploits the similarity of high-frequency components
across three color planes. Let hi, i = 0, 1, be the analysis wavelet
filters. By wavelet transform, the filters separate an initial full-
color plane C̄ ∈ {R̄, Ḡ, B̄} into dissimilar low-frequency and sim-
ilar high-frequency components,

C̄wl = C̄ ∗ h0

C̄wh = C̄ ∗ h1 (1)

where ∗ denotes the convolution operator. As the green plane is
more densely represented in Bayer CFA samples, and hence its

IV - 2251-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007



(a) (b) (c) (d)

Fig. 2. (a) Original image, (b) CFA samples, and the results of
performing high-frequency substitution in (c) wavelet domain, and
(d) spatial domain

Fig. 3. Test images (referred to as Image 1 to Image 10).

high-frequency information is better preserved, Gunturk’s method
uses the high-frequency component Fwh from an estimated full-
resolution green plane F to substitute the high-frequency compo-
nent, C̄wh , of the red and blue planes as follows:

C = C̄wl ∗ g0 + Fwh ∗ g1 (2)

where gi, i = 0, 1, are the synthesis wavelet filters.
However, such substitution incurs high computational com-

plexly. Even for the simple 5-3 wavelet used in [7], the wavelet
transform and its inverse processes require 32MN multiplications
and 32MN additions. Iterating the substitution for better results
leads to 384MN multiplications and 384MN additions.

To avoid the complex wavelet transform, we propose to per-
form the high-frequency substitution in spatial domain. Specif-
ically, we use a low-pass filter fl to separate the low and high-
frequency components as follows:

C̄sl = C̄ ∗ fl

C̄sh = C̄ − C̄sl (3)

and then substitute the reference high-frequency component Fsh

for that of the other two color planes, as follows:

C = C̄sl + Fsh (4)

The following lemma shows that the substitution in the spatial do-
main (4) and that in the wavelet domain (2) lead to the same result.

Lemma 1 Using the low-pass filter fl = h0 ∗ g0, performing
substitution of high-frequency information in the spatial domain
(4) can be the same as that in the wavelet domain (2).

Proof: Substituting the wavelet separation (1) into (2), we have

C = C̄ ∗ h0 ∗ g0 + F ∗ h1 ∗ g1 (5)

Incorporating the perfect reconstruction property of wavelet filters
[8], h0 ∗ g0 + h1 ∗ g1 = 1, and fl = h0 ∗ g0 into (5) yields

C = C̄ ∗ fl + F ∗ (1 − fl)

which is equivalent to (4) due to (3). �
In addition to having a lower computational complexity, the

proposed spatial-domain substitution scheme can address an in-
herent drawback in the wavelet-domain substitution in [7]. For the

Table 1. PSNR performance (in dB) comparison of substitutions
in the wavelet domain and the spatial domain.

Spatial
Image Wavelet 5-3 fs

R 33.80 34.87 35.98
1 G 34.83 38.08 39.61

B 33.90 34.99 36.19
R 37.30 37.69 37.26

2 G 40.92 42.43 41.80
B 39.83 39.88 39.56
R 40.49 41.19 41.20

3 G 42.29 44.32 44.11
B 40.07 40.67 40.63
R 36.83 37.32 37.00

4 G 40.82 43.36 43.65
B 40.13 41.02 41.60
R 35.35 36.32 36.81

5 G 36.02 39.15 39.82
B 34.87 35.79 36.22

latter, since at least half of the values in each color plane are esti-
mated to obtain a full-resolution plane, and the errors of the esti-
mated values mainly reside in high frequencies due to CFA sam-
pling, this limits the accuracy of the reconstructed, reference high-
frequency component Fwh , and hence degrades the overall demo-
saicking quality. To mitigate this limitation, Gunturk et al. iterated
high-frequency substitution in the wavelet domain several times.

By working in the spatial domain, we can use a simpler and
more effective scheme to address the above-mentioned limitation.
This is because less amount of interpolation errors will be incurred
at the low frequencies C̄sl , and hence they can be estimated more
accurately by low-pass filtering the interpolated plane C̄. Further-
more, since one true color value is available at each pixel (m, n)
from CFA samples, subtracting the true color value and the more
accurately estimated low frequencies in the corresponding color
plane can obtain pixel-accurate high frequencies, as follows:

Fsh(m, n) =
[C − C̄sl

]
︸ ︷︷ ︸

C̄sh

(m, n) (6)

where C(m, n) � CFA(m, n), the accurate color value from
CFA samples.

Figure 2 confirms that the proposed method using spatial-
domain substitution reduces the artifacts at red and blue CFA sam-
ples as compared with that obtained by the wavelet-domain substi-
tution [7]. (Here, we used Hamilton method [2] to obtain the initial
full-color planes, and used 5-3 wavelet [9] and its equivalent low-
pass filter in the spatial domain, i.e., Eq. (3)). Table 1 shows that
the proposed spatial-domain substitution can improve the PSNR
performance by up to 3 dB for test Images 1-5 in Figure 3.

To further reduce the computational cost, we can also use
a much simpler filter fs = [1, 1, 1]T [1, 1, 1] instead of the 5-3
wavelet filter. As shown in Table 1, the filter fs does not de-
crease the PSNR performance, but requires only 4MN additions
and 1MN multiplications for the filtering process, far fewer than
that of 5-3 wavelet filter.

The proposed spatial-domain high-frequency substitution can
be summarized in the following three steps:
1. Interpolate an initial full-color image C̄, C ∈ {R, G, B},
from CFA data. Apply a low-pass filter fl = fs [Eq. (3)]
on the initial image to separate its low and high-frequency
components, C̄sl and C̄sh .

2. Estimate the reference high-frequency component Fsh by
subtracting the accurate color values from CFA samples and
their corresponding low-frequency values using (6).
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3. Use Fsh and (4) to refine the three color planes.
In the substitution experiments reported above, Hamilton

method [2] was used for interpolating the initial full-color image.
In the next section, we propose an anisotropic interpolation scheme
that requires less computational cost and attains a notably better
quality.

3. INTERPOLATION OF INITIAL FULL-COLOR IMAGE

We propose here a simple anisotropic interpolation scheme to im-
prove the existing effective color interpolation (ECI) demosaicking
method [4]. To exploit both inter-pixel and inter-color correlations,
the ECI method interpolates color-difference images as follows:

C̄ = I(Cs −F) + F (7)

where Cs, C ∈ {R, G, B}, is the subsampled plane, F is the ref-
erence full-resolution plane, and I denotes the interpolation pro-
cess. The ECI method constructs the green plane and uses it as
the reference to interpolate the red and blue planes. Its perfor-
mance primarily depends on the quality of the constructed green
plane. To improve the green-plane interpolation, the ECI method
also interpolates the red and blue planes as reference. The method
can be summarized by the following steps: 1) Interpolate the red
and blue planes at green pixels; 2) Use the red or blue plane as
the reference to interpolate the green plane at red or blue samples;
3) Use the green plane as the reference to interpolate the red and
blue planes. We improve the ECI method by using an anisotropic
interpolation scheme instead of the original isotropic one.

Let Ih and Iv be the interpolation results on the horizontal
and vertical directions. The ECI’s isotropic interpolation averages
the results in both directions; that is

I =
Ih + Iv

2
(8)

An anisotropic interpolation keeps only the results in the smooth
direction. Let wh and wv be the edge indicator in the horizon-
tal and vertical directions. A typical anisotropic interpolation [2]
works as follows:

I =

{ Ih wh − wv ≤ 0
Iv wh − wv > 0

(9)

However, the anisotropic method may fail in smooth regions,
where the image contents in both of the two directions are smooth
and an isotropic interpolation (8) could perform better.

To address this problem, we propose using a simple threshold
T to combine isotropic (8) and anisotropic (9) interpolations,

I =

⎧⎨
⎩

Ih wh − wv < −T
Ih wh − wv > T
Ih+Iv

2
otherwise

(10)

This new ternary, anisotropic interpolation scheme identifies a new
smooth region–the third class in (10)–and improves the perfor-
mance in the region. Some existing methods also use similar
ternary interpolation, but with T = 0 [2], which sometimes mis-
classifies smooth regions as edge regions.

To show the improvement, we apply the interpolation schemes
(9) and (10) in Step 2 of the ECI method [4] because the green
plane is essential for interpolating the red and blue planes. This
operation also requires less computational cost as there are fewer

Table 2. PSNR performance (in dB) comparison of anisotropic
interpolations.

Image Hamilton ECI ACI TACI
R 33.25 32.66 33.52 34.07

1 G 34.83 35.33 34.81 35.54
B 33.36 32.80 33.61 34.17
R 36.95 34.39 37.22 37.45

2 G 40.92 39.16 40.91 41.69
B 39.43 36.69 39.56 40.04
R 39.97 37.21 40.35 40.98

3 G 42.29 40.91 42.29 43.24
B 39.85 37.71 39.70 40.21
R 36.34 36.40 36.35 36.64

4 G 40.82 41.37 40.96 41.95
B 39.45 38.89 40.12 41.02
R 34.74 33.92 34.87 35.36

5 G 36.02 36.29 36.00 36.60
B 34.43 33.97 34.40 34.85

missing green values. We use a simple edge indicator as described
in [2] to compute the weights wh and wv , and set T = 20 based
on a small set of test images.

Table 2 shows that the proposed ternary anisotropic color in-
terpolation (TACI) yields the best PSNR results. TACI improves
the performance about 2 dB on average compared to isotropic-
based ECI, and 0.6 dB compared to anisotropic color interpola-
tion (ACI). Note that the two anisotropic interpolations have nearly
the same computational complexity. As for Hamilton demosaick-
ing [2], its PSNR performance is 0.8 dB worse than TACI, and
it also requires about two times the computational cost. Specifi-
cally, Hamilton demosaicking requires 21MN additions, 11MN
shifts, 8MN absolutes, and 1MN comparisons, while the pro-
posed TACI needs only 12MN additions, 4MN shifts, 2MN ab-
solutes, and 1MN comparisons.

4. PERFORMANCE COMPARISON

In this section we compare the performance of the proposed
spatial-domain high-frequency substitution (SHFS) with several
recent state-of-the-art demosaicking methods: Alternating Projec-
tions (AP) [7], Successive Approximation (SA) [6], Frequency Se-
lection (FS) [5], and Frequency Domain Method (FDM) [3].

4.1. Demosaicking results

Table 3 shows the PSNR performance of the proposed and the
comparison methods. On average, the improvement of the pro-
posed method is around 0.5 dB to AP, 0.7 dB to SA, and 1.7 dB
to FS. As for FDM, which also uses an anisotropic interpolation
scheme, its performance is comparable to our proposed method at
the cost of much higher complexity (see Section 4.2).

Figure 4 compares the perceptual results of these methods, and
shows that our proposed method obtains the best perceptual re-
sults with sharper edges and fewer zipper artifacts. Severe zipper
artifacts are produced around the edges obtained by the AP, SA,
and FS methods due to the use of isotropic techniques. The FDM
method can obtain better results but some artifacts remain because
its energy criteria for estimating the edge direction may not be as
accurate in some image regions.

4.2. Complexity

Table 4 summarizes the computational complexity of the proposed
method and the comparison methods. For simplicity, we consider
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Table 3. PSNR performance (in dB) comparison.
Image AP SA FS FDM SHFS

R 36.59 36.66 35.06 37.03 36.41
1 G 40.49 40.88 39.64 41.05 40.31

B 36.86 37.64 35.45 37.20 36.63
R 35.87 35.54 34.04 37.08 37.29

2 G 40.81 40.06 39.70 41.87 42.09
B 38.60 39.07 36.57 38.74 39.71
R 40.43 39.08 38.67 41.25 41.39

3 G 43.48 42.21 42.20 44.12 44.28
B 40.39 39.36 38.49 40.45 40.84
R 36.68 36.17 35.19 37.11 37.02

4 G 43.33 42.64 42.99 44.68 43.97
B 41.43 40.88 40.76 42.49 42.15
R 36.82 35.59 34.96 37.38 37.04

5 G 39.81 38.27 38.46 40.57 40.17
B 36.55 35.34 34.80 36.69 36.47
R 37.72 37.22 36.24 39.86 37.99

6 G 41.52 41.40 40.81 43.12 41.44
B 37.27 36.67 35.66 38.23 37.11
R 40.84 40.12 38.89 41.50 41.56

7 G 43.62 42.67 42.44 44.83 44.10
B 39.92 39.35 38.08 40.43 40.56
R 34.06 34.44 31.42 34.29 34.36

8 G 38.59 38.74 36.60 38.66 38.50
B 34.29 35.00 31.57 34.28 34.37
R 40.54 40.60 38.68 40.97 41.20

9 G 43.26 43.33 42.34 44.00 44.61
B 41.43 41.36 39.73 42.34 42.71
R 40.55 40.12 39.28 40.94 40.90

10 G 43.89 43.86 43.55 44.70 45.00
B 40.68 40.56 40.07 41.41 41.48
R 36.95 36.66 35.63 37.57 37.30

Average G 40.49 40.24 39.80 41.26 40.94
B 37.31 37.10 35.89 37.59 37.51

Table 4. Comparison of demosaicking complexity.
No. of computational operations

Method Additions Multiplications
AP 384MN 384MN
SA 37.5-53.5MN 12.75-21.25MN
FS 124MN 21MN
FDM1 40 log2(MN)MN 20 log2(MN)MN
Ours 34MN 3MN

the cost of a shift, absolute, or comparison operation the same as
that of an addition operation since they all can be completed in
one clock cycle. The computational costs of the comparison meth-
ods are either taken directly from the original papers (AP [7] and
SA [6]), or obtained based on our analysis of the algorithms de-
scribed in the respective papers (FS [5] and FDM [3]). It follows
from Table 4 that our method requires the fewest numbers of mul-
tiplications and additions. In particular, the FDM method, which
yields comparable PSNR performance, requires over 100 times of
multiplications and 20 times of additions when compared with the
proposed method.

5. CONCLUSIONS

We have proposed in this paper an efficient and effective CFA de-
mosaicking method. Our proposed method substitutes the high-
frequency information between color planes in the spatial domain
instead of in the wavelet domain. The spatial-domain substitu-
tion not only can reduce the computational cost greatly, but also

1The complexity analysis is based on performing convolution using
FFT for its simplicity. For example, considering the size of test images
used in our experiments (M = 512 and N = 768), the numbers of ad-
ditions and multiplications required are 743MN and 372MN , respec-
tively. Performing direct spatial filtering requires 1833MN additions and
1833MN multiplications.

(a) Original (b) AP

(c) SA (d) FS

(e) FDM (f) Proposed

Fig. 4. Original and demosaicked results of a cropped region

improve the high-frequency estimation and the substitution per-
formance. A ternary anisotropic interpolation scheme is also pro-
posed to obtain the initial full-color planes required for the sub-
stitution. Compared to four recent state-of-the-art methods, the
experimental results show that our proposed method yields better
PSNR performance and perceptual results and requires the least
computational cost.
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