
NONLINEAR POISSON IMAGE COMPLETION USING COLOR MANIFOLD 
 

Su Xue, Qionghai Dai (Senior Member, IEEE) 
 

Dept. of Automation, Tsinghua University 
 

          
Fig. 1. From left to right: the input image, the object to be removed (unknown region), the completion result of ordinary 
Poisson interpolation, and the completion result of the proposed method. 

 
 

ABSTRACT 
 
While most image completion methods focus on filling 
regions with structures or stationary textures, few are 
suitable for completing large-scale missing parts on 
complex background with nonlinearly progressive color 
changes. In this paper, we propose a novel approach, termed 
as nonlinear Poisson completion, to solve this problem. The 
visible parts of the background serve as a training set, from 
which we learn the embedding nonlinear subspace of 
progressive colors, namely color manifold. A Poisson image 
completion procedure, which works efficiently for smoothly 
linear interpolation, is extended to nonlinearly recover the 
missing regions with iteration solution confined to the 
manifold. In some especially challenging cases, a simple 
post-processing serves to generate more natural-looking 
results. Experiments on both synthetic and real images 
verify the effectiveness of the proposed algorithm. 
 
Index Terms— Image processing, image analysis, image 
restoration, interpolation 
 

1. INTRODUCTION 
 
Image completion/inpainting is an important tool for many 
image editing tasks, such as image restoration, removal of 
selected objects and etc.. The goals are to infer the unknown 
regions based on observed visual information, generating 
convincingly natural-looking results. However, we cannot 
expect one method to address all problems due to the 
inherent ambiguity of image completion from a single 

image. Designing different completion schemes according 
to different kinds of situations is a more reasonable and 
feasible choice.  

One of the two major categories of previous inpainting 
works is based on partial differential equations (PDEs). 
Originated by [1], there are many derived variations [2, 3].  
They are mainly applicable for small gaps and thin missing 
structures, e.g. edges and contours. The other category using 
texture synthesis [4, 5] can handle thick unknown regions 
with structured or stationary textures. This precondition and 
high running time restrict its applications.  

However, the large-scale image completion tasks on 
backgrounds with complexly progressive colors (see Fig. 1), 
which are widely seen in nature and art photos, remain very 
challenging to the traditional methods mentioned above. 
Without obvious cues of structures or stationary textures, 
those methods suffer from the over-smoothing effects and 
computational inefficiency.  

In this paper, we propose a novel method to solve this 
problem. Inspired by the points of view from machine 
learning and its graphic application [6], this work rests on 
the observation that complexly progressive colors lie in an 
embedding low-dimensional subspace in nature, termed as 
color manifold, which can be learned from the visible parts. 
With classic manifold learning algorithm, e.g. Isomap [7], 
we can find a Euclidean space describing the color manifold. 
Thus, linearly smooth interpolation in such a description 
space amount to completing unknown regions in a nonlinear 
manner in RGB space. As an effective linear interpolation 
tool, Poisson editing [8] is extended to this new scenario, 
interpolating the description values and producing smooth 
completion of nonlinearly progressive colors. That is why 
nonlinear Poisson completion is named.  In some especially 
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Fig. 2. Left: training samples; right: the neighborhood graph, 
revealing the embedding 1-dim curve of progressive colors. 
 
 
difficult cases, perceivable discontinuous patterns exist in 
completion borders due to backward mapping errors. A 
simple and fast post-processing can assist in achieving 
better seamless blending.  

With deeply exploiting global information, our method 
solves a local problem effectively and efficiently, which 
inspires a general intelligent image completion framework 
based on image analysis. The following sections will detail 
the algorithms above and demonstrate experimental results. 
 

2. LEARNING COLOR MANIFOLD 
 
With selected known pixels as a training set, we can build a 
color manifold by constructing a neighborhood graph for 
their RGB values. Like [7], each point is connected to its k-
nearest neighbors and then outliers in the graph are pruned 
by a length threshold . From the structure of the 
neighborhood graph, we can compute the shortest path 
between given two points with Dijkstra algorithm. The path 
length is used as the interpoint geodesic distance and all 
geodesic distances constitute a matrix Dg, reflecting the 
underlying nonlinear low-dimensional geometry of the color 
manifold. Fig. 2 illustrates the construction of neighborhood 
graph.  

For further computational convenience, a parametric 
form of the data mapped into the manifold need be obtained. 
Applying classical MDS to Dg will suffice, as Isomap [7]. 
Given observed samples X = {xi}, MDS finds a description 
space, namely a low-dimensional Euclidean space, where 
the projective coordinates Y = {yi} best maintain the 
interpoint relationship of the color manifold. By converting 
Dg to inner product matrix B = XTX, finding Y is equivalent 
to minimizing the function min E(Y) = min||B – B’||F2 = 
min||B – YTY||F2, s.t. rank(Y) = rank(yi) = d < 3. The global 
optimum is achieved when the coordinates Y is set as Y = 

d
1/2Ud, where d consists of the top d eigenvalues of B and 

Ud comprises corresponding normalized eigenvectors.  
Note that actually we do not know the embedding low 

dimension d before performing MDS, computing the best d 
is a foremost problem. From matrix analysis theory, the 
residue of dimension reduction is the sum of eigenvalues 
excluded by d.  Thus, we can plot d-residue curve and find 
the best d at the elbow point. Fig. 3 explains this method for 
the  neighborhood  graph  shown in  Fig. 2, and displays the 

 
Fig. 3. Left: d-residue curve, bottoming at d = 1; right: the 
projective coordinates Y in the Euclidean description space.  

 

     
Left: the input image; top-right: the object to be 

removed; down-right: the selected training set. 
 

        
Building the neighborhood graph and finding the best d. 

Fig. 4. Another example of color manifold learning. 
 
 
obtained projective coordinates Y in d-dim description space. 
Another example of color manifold learning for a nature 
photo is showed in Fig. 4. The discovered embedding 
subspace reflects intrinsic structures of the progressive 
colors, whose projective coordinates facilitate further 
operation.  
 

3. NONLINEAR POISSON COMPLETION 
 
After finding the Euclidean description space, linearly 
smooth interpolation for the projective coordinates of 
progressive colors is equivalent to nonlinearly smooth 
interpolation confined in the manifold. Consider that 
Poisson editing [8] is a powerful tool for linear interpolation 
directly in RGB channels. Poisson interpolation can be 
defined as an optimization problem that seeks to recover 
missing interior pixel values f*(D) in the smoothest manner, 
given unknown region D, its border D and border values 
f( D). It can be formulized like:  

2
min | |

Df
f s.t . *( ) ( )f D f D                 (1) 
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Fig. 5. Poisson interpolation results for d-dim projective 
coordinates over unknown regions. For visualization, black 
denotes normalized coordinate 0, and white 255.  
 
 
The optimal solution is achieved when Euler-Lagrange 
equation with Dirichlet boundary condition is satisfied: 

2 2

2 2 0f ff
x y

 over D, s.t. *( ) ( )f D f D      (2) 

The form (2) is one kind of Poisson equation that can be 
discretized and solved by Gauss-Seidel iteration method 
with high computational efficiency. 

As one linear interpolation method, direct Poisson 
completion in three working channels (RGB or Lab say) 
will result in serious blurring artifacts for large-scale loss of 
nonlinearly progressive colors, refer to Fig. 1. Instead, if we 
can map the pixels of D (including D) into description 
space, performing the Poisson interpolation for their 
projective coordinates will be equivalent to nonlinearly 
completing D with progressive colors. Fig. 5 demonstrates 
two Poisson interpolation results of projective coordinates. 
Except a few cases, the computation is rather efficient 
because of the dimension reduction.  

In practice, the projective coordinates are normalized to 
0~255 for consistency with ordinary Poisson method. In the 
case that the missing region connects non-progressive parts 
somewhere, e.g. the root of the tree in Fig. 4, a simple 
manual structure propagation like [9] or a local PDE-based 
method can be employed first.  
Post-processing When the results of projective coordinates 
are mapped backward to RGB space, some errors may occur 
and result in perceivable discontinuous patterns along the 
border D in some challenging cases. Seamless blending 
can be achieved by morphologically dilating D to form an 
expanded border, in which the Poisson completion in RGB 
channels is performed. Fig. 6 highlights a local region of the 
completion result before and after post-processing. 
 

4. EXPERIMENTAL RESULTS 
 
Besides the synthetic test image Fig. 1, the proposed 
nonlinear Poisson completion algorithm is also verified on 
several real nature images, as shown in Fig. 7 and Fig. 8. 
All the examples use images available from public sources 
over the Internet. During color manifold learning, we select 
some 1500 points in the training set and choose k = 8 for k-
nearest connecting in neighborhood graph construction. For 

               
Fig. 6. Post-processing. From left to right: discontinuous 
pattern along the border after backward mapping; Dilation 
of the border; seamless blending result. 
 
 
solving Poisson equation, the upper limit of iteration times 
is set to 10000 and the convergence threshold  is set to 
0.01.  

As seen from the results, ordinary Poisson completion 
in RGB space results in unpleasing blur effects and hardly 
converges in limited iteration times. In contrast, our 
proposed method produces very natural-looking results (see 
Fig. 1, 7 and 8) and is verified computationally efficient. 
Because the iterations are confined to embedding subspaces, 
the times to achieve convergence are greatly saved. Besides, 
the number of working channels are reduced to d with d<3. 
Including color manifold learning, the nonlinear Poisson 
completion algorithm can be completed in less than 1 
minute for our test images, using non-optimized C++ code 
running on a CPU Pentium2.4GHz PC.  
 

5. CONCLUSION 
 
We proposed a novel nonlinear Poisson completion scheme 
to address the large-scale inpainting tasks on backgrounds 
with complexly progressive colors, which are challenging to 
traditional methods. With learning an underlying low-
dimensional color manifold from training samples, 
nonlinearly smooth interpolation over missing regions can 
be achieved by solving a Poisson equation for the projective 
coordinates of original colors. Visually pleasing results are 
generated and the computation is also efficient.  

The proposed scheme inspires a general framework of 
“learning globally, solving locally” procedures. Borrowing 
information from pictures at other times or other views, we 
can expect to solve difficult problems in immediate images. 
Extending the method to progressive non-stationary texture 
images is our future work.  
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Fig. 7. Top-left: the input image; top-right: the object to be removed; down-left: the result by ordinary Poisson completion in 
RGB channels; down-right: the result by nonlinear Poisson completion; down-middle: the highlight of local comparison. 
 

         
 

         
Fig. 8. Another example. Top-left: the input image; top-right: the object to be removed; down-left: the result by ordinary 
Poisson completion in RGB channels; down-right: the result by nonlinear Poisson completion. 
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