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ABSTRACT

In this paper, a spatio-temporal Markov random field method is pro-
posed for block-based packet video error concealment. We suggest
the combined usage of two estimators, one for lost pixels, and one
for lost motion vectors. The estimator for the lost pixel field takes
surrounding pixels in the same frame where the loss occurred and
motion-compensated pixels from a previous frame based on a motion
field estimate into account, while the optimal estimator of the motion
field takes surrounding pixels in the same frame where the loss oc-
curred, pixels from a previous frame, and the estimator function for
the pixel field into account. Our method increases performance in
peak signal-to-noise ratio as well as subjective visual performance
compared to several other previous error concealment algorithms.

Index Terms— Error concealment, block-based packet video,
estimation, Markov random field.

1. INTRODUCTION

The state-of-the-art video-coding scheme H.264/MPEG-4 part 10 is
block-based, i.e. block-based motion-compensated inter-frame pre-
diction, transformation, and quantization is employed in the scheme
[1]. While such an encoder achieves high compression efficiency,
the resulting bit stream is vulnerable to communication channel im-
pairments. Packet errors occur in video transmission over a packet
network such as the Internet, and may be characterized by a simul-
taneous loss of a bigger amount of data locally in the video stream.

Error concealment is the name for the category of techniques
that repair errors without auxiliary information from the encoder
[2]. Block-based packet video error concealment methods are usu-
ally categorized into spatial approaches such as [3], that use only
spatially surrounding pixels for estimation of lost blocks, and tem-
poral approaches such as [4] and [5], that use motion information
and pixels from previous frames. A third group of strategies such as
[6], [7], [8] and [9] combines spatial and temporal information for
error concealment.

In this paper, we introduce mathematical notation for analyzing
potential and existing solutions to the block-based packet video er-
ror concealment problem in terms of which information that is used
by the schemes. In the reasoning that follows, we suggest a spatio-
temporal strategy that combines two estimators. An estimator for
the lost pixel field takes surrounding pixels in the same frame where
the loss occurred and motion-compensated pixels from a previous
frame based on a motion field estimate into account, while the op-
timal estimator of the motion field takes surrounding pixels in the

same frame where the loss occurred, pixels from a previous frame,
and the estimator function for the pixel field into account.

Section 2 analyzes solutions to the block-based packet video
error concealment problem in terms of which information that is
used, and spatio-temporal Markov random field (MRF)-based packet
video error concealment is proposed. In Section 3, our method is
compared to previous efforts. The paper is concluded in Section 4.

2. SPATIO-TEMPORAL MRF-BASED PACKET VIDEO
ERROR CONCEALMENT

In this section, spatio-temporal MRF-based packet video error con-
cealment is introduced. First in Section 2.1, the block-based packet
video error concealment problem is analyzed, and the assumptions
used in spatial, temporal, and spatio-temporal error concealment are
quantified. Thereafter, in Section 2.2, our methodology, that is based
on observations in Section 2.1, is proposed.

2.1. Spatial, temporal and spatio-temporal error concealment

Assume that a loss of a group of neighboring pixels represented by
the stochastic vector X , occurs in frame t. Suppose more specifi-
cally that the loss is such that the motion vectors (MV) belonging
to X , and represented by the stochastic vector VX , as well as the
displaced frame difference for X in the case of inter-frame coding,
are lost. Pixels in frames t and t − 1 surrounding the lost area, here
represented by the vectors St

SUR and St−1
SUR respectively, as well as

MV information surrounding the lost area, here represented by the
vector VSUR, are available for forming a replacement of X . From
an information theoretic perspective, a spatio-temporal optimal esti-
mate

X̂ = g1(S
t
SUR, S

t−1
SUR, VSUR) (1)

where all available information is considered, is desirable. However,
because objects move between the frames, the number of pixels in-
cluded in St−1

SUR has to be very big in order to include all pixels in
frame t − 1 that may be of interest. Therefore, subsets of the in-
formation St−1

SUR, S
t
SUR, VSUR, or subsequent usage of parts of the

information St−1
SUR, St

SUR, VSUR are considered for error conceal-
ment in previous approaches.

In what is traditionally known as spatial error concealment, in-
formation in frame t surrounding the lost area is used for replace-
ment ofX , i.e. the optimal estimate of the lost area may be written

X̂ = g2(S
t
SUR). (2)

The method [3] mentioned in Section (1) belongs to this category.
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However, temporal error concealment methods may restore details
better inside the lost blocks. Traditional temporal error concealment
is based on the thought that by estimating MVs for the lost area X ,
pixel information from frame t − 1 that has the highest correlation
with X is first sorted out, and may then be used for error conceal-
ment of X . This implies that error concealment is carried out by
subsequent usage of two estimators. An estimator function for the
lost pixel area takes an estimate V̂X of MVs together with a vector
of pixels in the previous frame St−1

SUR(V̂X) ⊂ St−1
SUR as arguments

X̂ = g3

“
S

t−1
SUR(V̂X)

”
= S

t−1
SUR(V̂X). (3)

For providing the optimal MV estimate V̂ ∗

X , the information St
SUR,

St−1
SUR, VSUR, and the trivial function g3 are employed. This optimal
estimate may be written

V̂
∗

X = h3(S
t
SUR, S

t−1
SUR, VSUR, g3). (4)

The methods [4] and [5] discussed in Section (1) belong to this cat-
egory. It is well known that motion-compensated frame estimation
achieves good results with low computational complexity in state-
of-the-art video coding [1]. However, in a scene with fast motion, or
following a scene change, spatial methods may work better.

A third group of methods that is traditionally considered as spatio-
temporal error concealment provides an estimate of the lost area
from pixels St

SUR in frame t, and a vector of pixels St−1
SUR(VSUR) ⊂

St−1
SUR and St−1

SUR(V̂ ∗

X) in frame t − 1

X̂ = g4

“
S

t
SUR, S

t−1
SUR(VSUR), St−1

SUR(V̂ ∗

X)
”
. (5)

MV estimates V̂ ∗

X that these methods rely on are however retrieved
without consideration of the estimator function g4 of the pixel field.
The methods [6], [7], and [8] discussed in Section (1) belong to this
category.

In [9], the estimator function for the pixel field may be written

X̂ = g5

“
S

t
SUR, S

t−1
SUR(VSUR), St−1

SUR(V̂X)
”
. (6)

Optimal MV estimates are in turn retrieved considering the estimator
function g5 of the pixel field

V̂
∗

X = h5(S
t
SUR, S

t−1
SUR, VSUR, g5). (7)

Such an approach should, in terms of information, be superior to the
strategies (2), (4) followed by (3), as well as (5). The reason for this
is that in (6), as much information as in (5) is taken into account,
while at the same time, (7) takes an estimate of the pixel field (6)
into account.

In the following, we will propose a spatio-temporal error con-
cealment scheme that has the form in (6) and (7), and that is based
on MRF modeling.

2.2. Spatio-temporal MRF-based error concealment

In this section, we adopt to the error concealment formulation incor-
porating the estimator pair (6) and (7) from Section 2.1. A MRF-
based maximum a posteriori (MAP)-optimal estimator of lost MVs
having the form (7), i.e. considering the estimator function g5, is
derived in Section 2.2.1. Thereafter, estimation of lost pixels as in
(6) is treated in Section 2.2.2.

2.2.1. Estimation of lost motion vectors

According to the Hammersley-Clifford theorem, a MRF is equiva-
lent to a Gibbs random field, that has an associated Gibbs distribu-
tion [10]. The joint probability density function (pdf) for the pixel
and MV fields is modeled as a MRF with a Gibbs distribution

p(s, v) =
1

Z
e
−

1

T
U(s,v) (8)

where Z is a normalizing constant called the partition function, T
is a constant referred to as temperature, and U(s, v) is a potential
function. Following [5] we choose to further specify

U(s, v) = US(s) + UV(v) (9)

=
X

γ

U
γ
S (s) +

X
γ

U
γ
V(v) (10)

where US and UV are potential functions constituted by clique po-
tentials U

γ
S and U

γ
V in the neighborhood system. Details of US and

UV, that are the same as in [5], will be included in a longer jour-
nal version of this paper, but are left out here because of insufficient
space. In order to form a pdf

Z =
X

s

X
v

e
−

1

T
U(s,v)

. (11)

If s = {st
SUR, v̂X} and v = {v̂X , vSUR}, we may formulate (7) as

the constrained MAP optimization problem

v̂
∗

X = arg max
v̂X

p(x̂, s
t
SUR, v̂X , vSUR) (12)

where the pdf is given by (8) and the constraint is given by (6). Tak-
ing the logarithm of (12), it is finally possible to write

v̂
∗

X =

arg min
v̂X

j
US

„
x̂

“
s

t
SUR, s

t−1
SUR(v̂X), st−1

SUR(vSUR)
”
, s

t
SUR

«

+UV(v̂X , vSUR)

ff
(13)

where neither the constant partition function Z nor the temperature
T appear. The optimization in (13) is efficiently solved by the iter-
ated conditional modes (ICM) algorithm [5]. To summarize, in (13),
the information St

SUR, St−1
SUR, V

t
SUR, and the estimator function g5

are taken into account, which means that we have achieved an ex-
pression on the form (7) for our estimator.

2.2.2. Estimation of lost pixels given estimates of lost motion vec-
tors

Here a method for achieving (6), i.e. an estimate of the lost pixel field
using surrounding pixels St

SUR, St
SUR(VSUR), and St−1

SUR(V̂X) is
presented. One 8×8-block of pixels that forms a vectorXBLOCK ⊂
X is estimated at a time. Inspired by the estimators [6], [7], and [8],
that have provided good results in peak signal-to-noise ratio (PSNR)
in comparison with other methods, we choose an estimator with the
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form

X̂BLOCK = g5

“
S

t
SUR, S

t−1
SUR(VSUR), St−1

SUR(V̂X)
”

= wA(St
SUR)

+(1 − w)IS
t−1
SUR(V̂X) (14)

w = w
“
S

t
SUR, S

t−1
SUR(VSUR)

”
(15)

whereA is a linear function of the border pixels toXBLOCK that be-
long to St

SUR and I is a matrix that chooses the motion-compensated
pixels for X̂BLOCK. Further w is a scalar function that depends on
the local video statistics and that regulates the influence of the pixels
St

SUR in the same frame where the loss occurred and the motion-
compensated pixels St−1

X (V̂X) from the previous frame on the final
estimate. The function w is only evaluated once for each block in
X , prior to applying (14) and (13) for finding a replacement.

Instead of (14), a form of (6) could have been chosen to resemble
the schemes in [6], [7], or [8] more closely. However, (14) has the
attractive feature that the first part of the estimator that uses pixels
from frame t may be separated from the computationally inexpen-
sive second part of the estimator that depends on the MV estimate
V̂X . In this way, the computationally expensive part of the estimator
wA(St

SUR) needs to be calculated only once, while only the compu-
tationally inexpensive part (1−w)ISt−1

SUR(V̂X) of the estimator will
vary with different candidate MVs when solving the optimization
problem (13).

For determining the linear function A, a regularizing approach
similar to the one in [3], and built on the assumption that the first
derivative should be minimal in the lost area, is developed. While
the method in [3] was iterative, we have for complexity reasons re-
formulated the method so that it may be used in a non-iterative man-
ner. More specifically, the iterative estimator of [3] reuses previously
estimated pixels of X when estimating XBLOCK. This means that
if the estimator in [3] would be applied without modification in our
algorithm, the whole estimator (14) of the pixel field would have to
be recalculated in each iteration of the iterative ICM algorithm when
solving (13). This is avoided by reformulating the method in [3] so
that it works in a non-iterative manner. For reasons of insufficient
space, the details of the derivation of the linear function A are omit-
ted here, but will be included in a longer journal version of the paper.
For now we only state the result in the case when pixels are available
on the upper (u) and lower (l) borders of the lost block. The other
cases, when different borders to the lost block are available, give rise
to similar expressions. Pixels from a realization st

SUR are included
in two vectors bu and bl together with zero entries, and the linear
function A may be written

A(St
SUR) =

“
(Au)TAu+(Al)

T
Al

”
−1“

(Au)Tbu+(Al)
T
bl

”
(16)

where Au and Al impose that the vertical first derivative should be
minimized between every pixel in the lost block.

We derive the scalarw in (14) in the minimummean square error
(MMSE) sense by solving

w = arg min
w′

E
»‚‚‚XBLOCK − w

′

A(St
SUR)

−(1 − w
′)IS

t−1
SUR(V̂ ∗

X)
‚‚‚2

2

–
(17)

where the norm ‖ · ‖2 is the Euclidean norm. This is equivalent

to maximizing the PSNR. We achieve

w =
1

E
»‚‚‚A(St

SUR) − ISt−1
SUR(V̂ ∗

X)
‚‚‚2

2

–

×E
»“

XBLOCK − IS
t−1
SUR(V̂ ∗

X)
”T

×
“
A(St

SUR) − IS
t−1
SUR(V̂ ∗

X)
”–

. (16)

The parameter w is calculated for each block prior to applying (13),
which implies that we neither have access toXBLOCK nor ISt−1

SUR(V̂ ∗

X)
in (16). Therefore, we use neighboring blocks to XBLOCK in order
to achieve w, i.e. XBLOCK is replaced by a function of St

SUR, and
ISt−1

SUR(V̂ ∗

X) is replaced by a function of St−1
SUR(VSUR). More specif-

ically, blocks in the neighborhood ofXBLOCK are used for evaluating
w. For evaluation, the expectation in (16) is replaced by a sample
mean of several available blocks surroundingXBLOCK.

To summarize, we have in Section 2.2 achieved an estimator of
the lost pixel field stated in (14) and (15) that has the sought form (6)
and an estimator of the lost MV field (13) that has the sought form
(7).

3. EXPERIMENTS

In this section, the proposed method is compared to methods sug-
gested by other authors. Simulation details, which are chosen to fit
state-of-the-art block-based video coders, are given in Section 3.1.
These conditions are impartial to all the compared schemes. Results
of the experiments are presented in Section 3.2.

3.1. Simulation prerequisites

Video. We use randomly chosen clips with a mean number of 18
frames from 89 MPEG-1 movies from [11] that have a frame rate
of 29.97 frames per second and an image size of 352 × 240 pixels.
Only the luminance component is used, but it is straight-forward to
apply the method on the chrominance components as well. MVs are
calculated for 8 × 8-blocks. Calculation of MVs for 8 × 8-blocks
is supported by H.264/MPEG-4 part 10 [1]. A search for a MV is
performed by checking every integer displacement vector (Δu, Δv)
where −8 ≤ Δu, Δv ≤ 8.
Packet errors. The video frames are first decoded, and thereafter
are lost contiguous areas comprising several blocks introduced in the
frames as in [5]. We assign a slice of 8×8-blocks to each packet, and
accordingly simulate packet loss by randomly distributing slices of
lost 8 × 8-blocks in the test sequences with error probabilities rang-
ing from 5 to 20%. Assigning information for closely situated 8×8-
blocks to different packets, as is done here by putting neighboring
slices of 8 × 8-blocks in different packets, has previously shown to
increase effectiveness of spatio-temporal error concealment schemes
[6]. Errors propagate temporally. It is further assumed that we know
at the decoder side where the errors occurred in the frames.
Proposed estimator. Optimization of (13) is carried out in the multi-
scale manner explained in [12] and [13]. TheMVs for the lost blocks
v̂X in (13) were initialized by the median of the MVs of the sur-
rounding available blocks [4]. If necessary, this strategy was applied
repeatedly so that also blocks without decodable neighbor blocks
were assigned initializing MVs. The search range of the ICM algo-
rithm when solving (13) was not specified in [5]. Each component of
the MVs was searched within the range between the minimum and
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maximum of the corresponding components of the initialization MV
of the upper, lower, left, and right blocks.
Benchmarking. The proposed estimator is compared to Zhu et al’s
method [6], that is a spatio-temporal method of the form (5). Zhu et
al’s method was inspired by [3], that also influenced our derivation
of the linear function A in (14). We also compare our scheme to
Zhang and Ma’s method [5], that influenced our choice of a MRF-
based strategy and that has previously shown good results in PSNR
in comparison with other error concealment schemes. Moreover, a
comparison is made with the boundary matching approach (BMA)
[9], that has the same spatio-temporal form as our method stated in
(6) and (7). Also, we compare our method to motion-compensated
copying and replacement of a lost MV by the median of surround-
ing MVs [4]. A comparison with motion-compensated copying and
replacement of a lost MV by the mean of surrounding MVs is also
made, as this method was used for comparison in [5].

3.2. Results

Performance in PSNR of the proposed method is benchmarked against
the methods described in 3.1. Slices of lost 8 × 8-blocks are dis-
tributed randomly in the test sequences with error probabilities vary-
ing from 5 to 20%. Results are seen in Figure 1.
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Fig. 1. Error concealment performance in PSNR. Slices of lost 8 ×
8-blocks are distributed randomly in the test sequences with error
probabilities varying from 5 to 20%.

The proposed method gives best performance in PSNR in all
comparisons. Moreover, it is seen in the simulations that Zhu et
al’s method that works merely by mixing pixel information from the
same frame where the loss occurred and from a previous frame, as
well as Zhang and Ma’s method that works merely by providing re-
fined MV estimates, both increase performance in PSNR compared
to motion-compensated copying with median MV estimate. Our ap-
proach works in both these ways.

Images that show that the proposed method improves subjective
visual quality will be included in a longer journal paper.

4. CONCLUSION

In this paper, spatio-temporal block-based packet video error con-
cealment is addressed using a combination of two estimators. An
estimator for the lost pixel field takes surrounding pixels in the same

frame where the loss occurred and motion-compensated pixels from
a previous frame based on a motion field estimate into account, while
the MAP-optimal estimator of the motion field takes surrounding
pixels in the same frame where the loss occurred, pixels from a pre-
vious frame, and the estimator function for the pixel field into ac-
count.

Our method increases performance in PSNR compared to sev-
eral other previous error concealment algorithms. Moreover, it is
seen in the simulations that a method that works merely by mixing
pixel information from the same frame where the loss occurred and
from a previous frame, as well as a method that works merely by pro-
viding refined MV estimates, both are effective in terms of PSNR in
the same scenario. Our approach works in both these ways.
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