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ABSTRACT

This paper presents a novel passive error concealment method for
wavelet coded images. The proposed method is a locally adaptive
directional interpolation approach, where the interpolation weights
are estimated based on the available local context. For each lost low
frequency coefficient, we estimate the optimal interpolation weights
based on the errors that would arise by horizontally and vertically
interpolating the available neighbors of the lost coefficient. Com-
pared to older methods of similar complexity, the proposed scheme
estimates the lost coefficients much better: on average, the PSNR is
increased with up to 0.6 dB. The results also indicate improvements
over the best available state-of-the-art techniques. The reconstructed
images also look better. As our method is fast and of low complexity,
it is widely usable.

Index Terms— Image reconstruction, image communication,
error concealment, wavelet coding.

1. INTRODUCTION

In lossy packet networks such as the Internet, information often gets
lost due to, e.g., network congestion. This data loss is particularly
annoying for compressed data, as the loss of a single bit can make the
rest of the data stream unusable. These problems are typically solved
by protecting the data (e.g., forward error correction) or by resend-
ing lost packets. A good overview of the corresponding Active Error
Concealment techniques, is given in [1]. In certain applications, the
packet retransmission is not an option, either because it is too slow
(e.g., for real time video) or because there is no return channel (e.g.,
broadcasting). In these cases, Passive Error Concealment [1] is es-
sential.

Passive error concealment exploits the redundancy in the image:
lost data is estimated from its correctly received neighboring data.
Therefore, neighboring data must be spread over different packets.
This is called dispersive packetization. Examples of packetization
techniques are parity based slicing [2] or a packetization based on the
partitioning of the Z

2 lattice [3]. We use the packetization strategy
of [3], but any dispersive packetization strategy will work with our
reconstruction algorithm.

In this paper, we focus on wavelet based image coding. We
compress images by dispersively spreading neighboring wavelet co-
efficients over different packets, and by coding these packets inde-
pendently from each other with the coder of [3]. These packets are
then sent over a lossy packet network. If a packet gets lost during
the transmission, the missing data are typically replaced by zeros,
which results in annoying black holes in the received image. As the
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low frequency coefficients contain most of the energy of the signal,
their loss has the greatest impact on the quality of the received con-
tent. Although the wavelet transform tends to decorrelate the signal,
there are substantial spatial dependencies between the coefficients,
especially in the low-pass subband. These spatial dependencies can
be used for the estimation of a lost coefficient.

Existing passive error concealment techniques for wavelet coded
images vary in complexity and speed. A very simple and straightfor-
ward technique is bilinear interpolation, where a lost coefficient is
replaced by the mean value of its four adjacent neighbors. The effi-
ciency of this method was demonstrated in [3]. In [4], a lost low fre-
quency coefficient is interpolated by fitting a cubic interpolative sur-
face to the known coefficients. Correct edge placement is achieved
by adapting the interpolation grid in horizontal and/or vertical direc-
tion according to the high frequency content. This method gives bet-
ter results than the bilinear interpolation, but is also more complex
and slower which may be less suited for low-end video clients such
as portable devices with only a small processing capacity. Further-
more, the method is only tested on uncompressed images and not in
a realistic compression scenario. In [5], the low frequency subband
is repaired by a Maximum A Posteriori (MAP) approach, using a
Markov random field prior in each subband. The potential functions
are adapted locally by estimating the edge characteristics based on
the evolution of the coefficients across scales. This technique gives
better results than the bilinear interpolation, but it requires much
more computational effort. Other notable works about passive error
concealment for wavelet coded images include [6] and [7]. However,
these methods recover complete image blocks for block based image
coders such as JPEG and JPEG2000, while our method reconstructs
lost wavelet coefficients which are much more scattered thanks to
the dispersive packetization.

It was shown in [3] that bilinear interpolation performs well
with dispersive packetization schemes. This method is very fast and
gives good results in smooth areas where there is much correlation
between neighboring coefficients. The problems arise near edges
where the coefficients are rapidly changing. In this paper, we aim
at making the interpolation scheme locally adaptive without exces-
sive increase in complexity. We propose a novel interpolation tech-
nique that has a complexity similar to that of bilinear interpolation
but yielding a reconstruction quality that is even higher than the qual-
ity achieved by the adaptive MAP approach of [5].

In the next section we describe the proposed interpolation meth-
od. Results and findings are in Section 3, and in Section 4 we draw
the conclusions and give some remarks about further work.

2. THE PROPOSED RECONSTRUCTION ALGORITHM

Most wavelet coders use a bi-orthogonal wavelet transform [8]. Our
reconstruction method is developed for this type of transformation,
but can also be extended to other types of wavelet transforms.
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In the remainder, we use the following notation: LLn denotes
the low pass subband (the scaling coefficients) at the decomposi-
tion level n; the wavelet coefficients are organized into the sub-
bands LH�, HL� and HH�, which denote respectively horizon-
tal, vertical and diagonal details at the decomposition level � where
� ∈ {1, . . . , n}.

The missing high frequency coefficients are difficult to estimate
because of the sparse and decorrelated representation. However, er-
rors in the high frequency content are less visible than errors in the
low frequency content and hence simple interpolation techniques are
effective in this case. We estimate lost LHn and HLn coefficients
by a one dimensional linear interpolation as in [3, 4], and set lost
HHn coefficients to zero.

In the remainder of this section, we describe our reconstruction
method for lost LLn coefficients. For clarity, we omit the index n,
which denotes the scale. The subscripts denote the spatial position,
e.g., LLi,j denotes the scaling coefficient at spatial position (i, j).

2.1. Detection of the local correlation

The proposed method adaptively estimates the local correlation in
the horizontal and vertical direction, and adapts the interpolation
weights accordingly. A lost coefficient LLi,j is estimated by an
adaptive weighted averaging in two directions: vertically (using the
upper and lower coefficients LLi−1,j and LLi+1,j), and horizon-
tally (using the left and right coefficients LLi,j−1 and LLi,j+1).

We denote the local horizontal interpolation by
L̂L

H

i,j = (LLi,j−1 + LLi,j+1)/2, and the vertical interpolation by
L̂L

V

i,j = (LLi−1,j + LLi+1,j)/2. The proposed interpolator is

L̂Li,j = αV
i,jL̂L

V

i,j + αH
i,jL̂L

H

i,j . (1)

The weighting factors for the vertical and horizontal direction,
αV

i,j and αH
i,j , are estimated locally at each spatial position (i, j).

We relate these local interpolation weights to a measure of the local
correlation in the corresponding directions. We estimate the local
correlation from the errors that would arise by horizontally and ver-
tically interpolating the neighbors of the lost coefficient.

We define the horizontal interpolation error measure as

EH
i,j = (LLi−1,j − L̂L

H

i−1,j)
2 + (LLi+1,j − L̂L

H

i+1,j)
2, (2)

and the vertical interpolation error measure as

EV
i,j = (LLi,j−1 − L̂L

V

i,j−1)
2 + (LLi,j+1 − L̂L

V

i,j+1)
2. (3)

In case where EH
i,j > EV

i,j , it is likely that vertical correlation is
dominant at position (i, j); the opposite is true for EH

i,j < EV
i,j .

2.2. Defining the optimal interpolation weights

In this section, we experimentally determine the optimal (in the mean
squared error sense) relationship between the interpolation weights
and the interpolation error measures EH

i,j and EV
i,j . Our experiments

showed that αH
i,j and αV

i,j do not depend on the exact values of EH
i,j

and EV
i,j , but only on the ratio EH

i,j/EV
i,j . We define the error ratio

Ri,j =
EH

i,j

EV
i,j

(4)

as a measure of the local correlation direction. For all the low fre-
quency coefficients of 146 different images, we calculated this error
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Fig. 1. Optimal αH
i,j and αV

i,j values and our approximation func-
tions.

ratio Ri,j . We then quantized the obtained range of error ratio values
into 20 intervals. Next, we grouped the low frequency coefficients
for which the error ratio was within the same interval. For each of
these groups of coefficients, we jointly optimized the interpolation
weights αH

i,j and αV
i,j with the least squares method. The resulting

optimal values of αH
i,j and αV

i,j in function of Ri,j are given in Fig. 1.
Based on the experimental data from Fig. 1, we propose the fol-

lowing model for αH
i,j and αV

i,j :

αH
i,j =

1

1 + Ri,j

, (5)

αV
i,j =

Ri,j

1 + Ri,j

. (6)

This model fits the data very well and it yields an accurate estimation
of the optimal interpolation weights from the error ratio Ri,j . By
substituting Eq. (4) in Eq. (5) and (6), we obtain respectively:

αH
i,j =

EV
i,j

EH
i,j + EV

i,j

, (7)

αV
i,j =

EH
i,j

EH
i,j + EV

i,j

. (8)

Note that, if EH
i,j � EV

i,j , then αV
i,j ≈ 1 and αH

i,j ≈ 0, such that
the lost coefficient LLi,j is reconstructed by vertical interpolation.
Vice versa, if EH

i,j � EV
i,j , then αV

i,j ≈ 0 and αH
i,j ≈ 1, such that the

lost coefficient LLi,j is reconstructed by horizontal interpolation.
If EH

i,j = EV
i,j , there is no preferential interpolation direction

and equations (7) and (8) yield in this case αH
i,j = 1/2 and αV

i,j =
1/2, which is equivalent to bilinear interpolation. Note that, inde-
pendent of EH

i,j and EV
i,j , αH

i,j + αV
i,j = 1 always holds1.

2.3. Iterative extension

In the proposed method, a lost coefficient is interpolated from its
four most adjacent neighbors. Therefore, if a neighbor of a lost co-
efficient is also missing, this has an impact on its reconstruction.

1If EH
i,j = EV

i,j = 0, then we choose αH
i,j = αV

i,j = 1/2.
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Table 1. Average PSNR [dB] for: Bilinear Interpolation (BI), the adaptive MAP approach of [5], and the proposed method, for n lost packets.
average PSNR for Lena

n BI MAP [5] Proposed
0 32.18 32.18 32.18
1 28.73 29.05 29.13
2 26.72 27.16 27.23
3 25.24 25.74 25.80
4 24.04 24.59 24.61

average PSNR for Peppers
n BI MAP [5] Proposed
0 31.66 31.66 31.66
1 27.89 28.05 28.33
2 25.75 25.94 26.27
3 24.20 24.40 24.72
4 22.93 23.15 23.44

average PSNR for Couple
n BI MAP [5] Proposed
0 33.33 33.33 33.33
1 29.91 29.98 30.12
2 27.94 28.01 28.20
3 26.52 26.57 26.80
4 25.34 25.41 25.68

Although the loss of adjacent coefficients is avoided as much as pos-
sible by the dispersive packetization [3], it is still occasionally possi-
ble to lose adjacent coefficients, especially for high packet loss rates.

In the proposed method, the interpolation weights are also esti-
mated from the surrounding coefficients. Loss of any of these adja-
cent coefficients decreases the reliability of the estimated interpola-
tion weights. A solution for this problem is iteratively recalculating
the lost coefficients. Of course, this quality improvement comes at
the expense of a higher computational cost, as more iterations need
to be performed.

3. RESULTS

We tested the proposed interpolation method in an experiment simi-
lar to the experiment of [5]. For each of our three test images (Lena,
Peppers, and Couple), we spread the coefficients over 16 packets
using the dispersive packetization scheme of [3]. Each packet was
then coded independently of the other packets by using the coder
of [3]. This makes each packet independently decodable which is
important in case of packet loss. The Lena (512 × 512) and Pep-
pers (512 × 512) images were encoded at respectively 0.208 and
0.207 bits per pixel (bpp) with four levels of wavelet decomposition.
The Couple (256× 256) image was encoded at 0.840 bpp, also with
four levels of wavelet decomposition. For each image this gives an
average packet size of 430 Bytes which is suitable for Internet trans-
mission without fragmentation. In all tests we used the Daubechies
9/7 bi-orthogonal wavelet filtering.

We then simulated the transmission of each image (i.e., the 16
packets of compressed coefficients) over a lossy packet network by
simulating the loss of every combination of n packets for n=1,...,4.
Each damaged image was repaired with the bilinear interpolation [3],
with the adaptive MAP approach of [5], and with the proposed lo-
cally adaptive method. For each n, we calculated the average PSNR
of the reconstructed images for each reconstruction method. The
results of this experiment are given in Table 1.

If no packets are lost, the PSNR of the reconstructed image is
equal to the PSNR of the originally broadcasted compressed image.
For the Lena and the Peppers images which are compressed at re-
spectively 0.208 and 0.207 bpp, the PSNR of the compressed image
is respectively 32.18 dB and 31.66 dB. The PSNR of the compressed
Couple image (0.840 bpp) is 33.33 dB.

From the results in Table 1, we notice that our proposed method
outperforms the bilinear interpolation with 0.2 up to 0.4 dB for low
packet loss rates and with 0.3 up to 0.6 dB for high packet loss rates.
For Lena, the average PSNR of the images reconstructed by the pro-
posed method is similar to the average PSNR of the images recon-
structed by the adaptive MAP approach of [5]. For the Peppers and
Couple images, our proposed method outperforms the adaptive MAP
approach of [5] with 0.1 up to 0.3 dB for low packet loss rates and
with 0.3 dB for high packet loss rates.

It is interesting to note that although our proposed method yields

Table 2. Average PSNR [dB] for the adaptive MAP approach of [5]
and the proposed method for the Peppers-image, for n lost packets.
The proposed method is iterated twice.

n MAP [5] Proposed Gain
0 31.66 31.66
1 28.05 28.33 0.28
2 25.94 26.31 0.37
3 24.40 24.81 0.41
4 23.15 23.58 0.43

a similar or a higher PSNR than the adaptive MAP approach of [5],
it is of a much lower complexity. As explained in [5], the adaptive
MAP error concealment method requires 1540 additions and 1456
multiplications for each lost coefficient. Our proposed method re-
quires only 14 additions and 13 multiplications for each lost coeffi-
cient, which is a reduction of a factor 100 compared to the method of
[5]. For comparison, the bilinear interpolation requires 3 additions
and 1 multiplication for each lost coefficient.

Furthermore, it is important to note that while the proposed meth-
od outperforms the adaptive MAP approach of [5], we only use a
simple one dimensional filtering for the high frequency coefficients.
In [5], the high frequency coefficients are reconstructed with a more
complex adaptive MAP method.

In the previous experiment, each lost coefficient was reconstruct-
ed only once, such that the loss of adjacent coefficients decreased
the reconstruction quality. Table 2 shows the results for the Peppers-
image where our reconstruction method has been iterated twice. This
technique is also used in the adaptive MAP approach of [5], where
the method is always iterated twice to cope with the loss of adjacent
coefficients. For small packet loss rates, these iterations have little
or no impact on the reconstruction quality of the proposed method.
This is due to the dispersive packetization: lost coefficients are as
far apart from each other as possible, so that there is little or no in-
terference between their reconstruction. For higher packet loss rates
(n > 1), the iterative method brings a gain in PSNR. For n = 4,
there is an increase of 0.14 dB compared to the non-iterative ap-
proach. This also means that for n = 4, our iterative method out-
performs the adaptive MAP approach of [5] with 0.43 dB for the
Peppers image. Note that two iterations of our proposed method
need exactly twice as much additions and multiplications as our non-
iterative approach, which is still negligible compared to the number
of operations of the adaptive MAP approach of [5].

We also illustrate the visual results on two images. Fig. 2 (a)
is the Lena-image compressed at 0.208 bpp. Fig. 2 (b) is the Lena-
image after the loss of packet 12 (i.e., 6.25% of the coefficients lost).
Fig. 2 (c), (d) and (e) are the images after reconstruction with respec-
tively bilinear interpolation, the adaptive MAP approach of [5] and
the proposed reconstruction method. As indicated by the PSNR, the
quality improvement is obvious.

In Fig. 3 we illustrate our iterative approach (Table 2) for high
packet loss rates. Fig. 3 (a) is the Peppers-image compressed at
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 (a)  (b)

 (c)  (d)

 (e)

Fig. 2. (a) Lena compressed at 0.208 bpp (PSNR = 32.18 dB). (b)
Lena after loss of packet 12. (c) Bilinear interpolation (PSNR =
28.29 dB). (d) MAP approach of [5] (PSNR = 28.54 dB). (e) The
proposed method (PSNR = 28.77 dB).

0.207 bpp. Fig. 3 (b) is the Peppers image with 4 lost packets (25%
of the coefficients). Without reconstruction, it is difficult to see its
content. Fig. 3 (c) is the reconstruction with the adaptive MAP ap-
proach of [5]. In this example with a lot of adjacent low frequency
coefficients lost, we repaired the image with the iterative version of
our reconstruction method with 2 iterations. The result is shown in
Fig. 3 (d). We obtained an increase in PSNR of 0.42 dB.

4. CONCLUSION

In this paper, we presented a novel locally adaptive interpolation
method for lost low frequency wavelet coefficients in image and
video communication. Our method estimates the optimal interpo-
lation weights from neighboring coefficients using novel error mea-
sures for horizontal and vertical interpolation, calculated from the
neighbors of the lost coefficient.

The experiments on different images have demonstrated that the
proposed method outperforms the bilinear interpolation for up to
0.4 dB in case of 6.25% of the coefficient lost, and up to 0.6 dB
in case of 25% of the coefficient lost. Compared to a more complex
locally adaptive MAP reconstruction method, our method performs
up to 0.3 dB better. An iterative version of the proposed method
increases its PSNR gain even more. While yielding a very good re-
construction quality, our method is of very low complexity.

 (a)  (b)

 (c)  (d)

Fig. 3. (a) Peppers compressed at 0.207 bpp (PSNR = 31.66 dB).
(b) Peppers after loss of packets 5, 6, 9 and 10. (c) Iterative recon-
struction with the adaptive MAP approach of [5] (PSNR = 22.85 dB).
(d) Iterative reconstruction with our proposed reconstruction method
(PSNR = 23.27 dB).
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