
LOSSLESS FMO AND SLICE STRUCTURE MODIFICATION
FOR COMPRESSED H.264 VIDEO

Wai-tian Tan, Eric Setton, and John Apostolopoulos

Streaming Media Systems Group
Hewlett-Packard Laboratories, Palo Alto, CA

ABSTRACT

We introduce a scheme to losslessly modify pre-compressed

H.264 video to enable at streaming time (1) modification of

slice sizes to fit transport packet size, and (2) introduction of

an error resilience feature, namely Flexible Macroblock Or-

dering. By lossless we mean the reconstructed video from the

modified bitstream is identical to that from the original com-

pressed bitstream. We outline how this transcoder operates,

and discuss some of its restrictions. The bit rate overhead for

operating on the pre-compressed, rather than directly encod-

ing the original video with the desired characteristics, is ana-

lyzed. Simulation results show 1 to 2 dB improvement when

our scheme is applied to QuickTime generated H.264 videos

transported over a lossy packet network.

Index Terms— Error resilience, H.264, MPEG-4 AVC.

1. INTRODUCTION

Slices are independently-decodable collections of mac-

roblocks that compose a coded picture. It is well known that

the error resilience of a compressed video depends signifi-

cantly on its slice structure. The reason for the dependency

is twofold. First, since they are coded independently, the

use of more slices improves error resilience at the expense of

lower coding efficiency. Second, to improve the effect of error

concealment, H.264 [1] has a Flexible Macroblock Ordering
(FMO) feature that allows a slice to contain an arbitrary set of

macroblocks that need not be in raster-scan order. FMO also

involves a tradeoff between error resilience and compression

efficiency [2]. An illustration of FMO is given in Fig. 1.

Generally, the slice structure of a compressed video is de-

termined at content-creation time and is not modified when

streaming. For video transmission over a channel with few or

no losses, it is efficient to have one slice per picture. When

losses are more frequent, however, it is preferable to employ

one slice per transport packet and FMO [3]. It remains dif-

ficult to make the appropriate choice at content creation (en-

coding) time, since channel characteristics at streaming time

may be difficult, if not impossible, to predict, and the content

may also be used in multiple settings with different loss char-

acteristics. Instead, a better solution is to allow the slice struc-

ture to be modified while streaming according to observed

channel conditions.

There are different techniques for transcoding compressed

video during a streaming session, and these may or may not

incur degradation in visual quality depending on the specific

technique used [4]. Generally, transcoding techniques in-

volving requantization tends to incur significant “re-encoding

loss” of signal quality, and can incur high computational cost.

In this paper, we introduce a low-complexity scheme in

which compressed H.264 video can be losslessly transformed

into another H.264 video with a different slice structure. By

lossless, we mean the input and output videos decode to

reconstructed pictures with identical pixel values. Such a

scheme is desirable in two scenarios. First, many content

creation tools such as QuickTime Pro do not allow user to

choose the slice structure or employ FMO. Our scheme al-

lows error resilience to be introduced post-encoding. The

possible PSNR improvement achieved by our scheme when

transmitting such content over lossy networks is presented

in Section 4. Second, even for encoders that allow arbitrary

slice structures, our scheme eliminates the need for predicting

channel conditions at content creation time.

The remainder of this paper is organized as follows. The

procedures of the proposed scheme are discussed in Section 2.

The overhead of adding FMO to a compressed video com-

pared to encoding it directly is characterized in Section 3. The

proposed scheme is then applied to H.264 video content gen-

erated by QuickTime, and simulation results under various

packet loss rates are presented in Section 4.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

(a) Example without FMO (b) “Checkerboard” with FMO

Fig. 1. Instead of raster-scan only, FMO allows slices (shown

in different shades) to contain an arbitrary set of macroblocks.

IV - 2851-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

Motion
Compensation

Entropy Decode

Inverse
Quantization

Decoder

Slices of coded
picture

Motion
Estimation

Entropy Encode

Quantization

Encoder

MB Dependency
Computation

MB Dependency
Removal

Compute
New

Slice Map

Slices of coded
picture

Fig. 2. Modification of FMO usage is achieved using low-

complexity operations in the compressed domain only.

2. CHANGING SLICE STRUCTURE LOSSLESSLY

The main components of our scheme are outlined in Fig. 2.

The procedure is applied to P-slices only, and has been tested

on many video sequences coded using (1) JM 10.1 [5], base-

line profile, and (2) QuickTime Pro 7.1.3. I or IDR-slices are

not modified. Considering B-slices may be the subject of fu-

ture work. The procedures operate in the compressed domain

and have low computational complexity.

First, in the Entropy Decode step of Fig. 2, our

scheme reverses the entropy coding of P-slices of a com-

pressed picture to obtain all the symbols. These include the

macroblock type and the quantization parameter (QP) differ-

ence, for each macroblock, motion vector differences, and the

number of non-zero coefficients, for each 4×4 block. In the

step MB Dependency Removal, differential coding is re-

versed to obtain motion vectors and QPs for each macroblock.

2.1. Forming a New Slice Map

When a coded picture of the input video contains intra-coded

macroblocks, the possible output slice maps consistent with

perfect reconstruction is constrained. For example, consider

Fig. 3 where macroblocks (MB) 10 and 30 are intra-coded.

Due to possible intra-prediction, MB 1, 2, 3, 9 may be needed

to decode MB 10, and therefore need to be assigned to the

same output slice as 10, as shown in Fig. 3-(b). Similarly,

MB 30 is dependent on MB 29 but not on 21, 22, 23 on the

input. In the output slice map, we need to assign 29 and 30

to the same slice, and 21, 22, 23 to a different slice than 30.

This is necessary as prediction in intra-macroblocks, when it

is implicit, depends on the presence or absence of different

neighbors of the macroblock in the decoded slice.

This constraint imposed by intra-blocks has two conse-

quences. First, arbitrary mapping of macroblocks to slices

is not possible. We can only freely assign non-intra mac-

roblocks and macroblocks outside of “intra-neighborhoods”

(shown dotted in Fig. 3). Therefore, in Sections 3 and 4,

when we mention “checkerboard” and “alternate lines” as-

signments, we mean an approximate assignment after con-

0 1 2 3 4 5 6 7

8 9 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

10

30

0 1 2 3 4 5 6 7

8 9 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

30

10

(a) Input picture slice map (b) Modified slice map

Fig. 3. The intra-coded macroblocks 10 and 30 have a neigh-

borhood (shown dotted) which constrains the modified slice

map and only allows an approximate “checkerboard”.

straints of intra-blocks are satisfied. Second, for irregular

slice maps, it is necessary to explicitly code the slice map.

For the case of two slices per picture considered later in this

paper, the cost is one bit per macroblock.

2.2. MB Dependency Computation

After an output slice map is determined, quantities that are

predictively coded need to be adjusted to the new slice struc-

ture. First, motion vector differences. In MB Dependency
Removal, the motion vectors for every block (4×4, 8×8 or

16×16) are computed. New motion vector predictors under

the new slice map are determined, and new motion vector dif-

ferences are computed and coded. Please note that a skipped

macroblock has a motion vector difference of zero. If the pre-

dictor changes under the new slice map, it is necessary to code

formerly skipped blocks explicitly with the new motion vec-

tor difference (and a “coded block pattern” (CBP) of zero).

Second is the number of nonzero coefficients for 4×4

blocks. Similar to motion vector differences, these values are

simply re-encoded using the new prediction associated with

the output slice map.

The QP difference is re-encoded for macroblocks with

such a field. For macroblocks with no nonzero coefficients

(skipped or with a CBP of zero), the QP difference is not

coded. In Fig. 4-(a), MB 18 and 19 have QP of 25 and 30,

respectively; MB 20 is skipped and decoded with the same

QP as the previous block, i.e., 30. For the slice map of Fig. 4-

(b), a new QP of 25 is assumed if this block was coded as

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17
QP
25

QP
30

21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

20

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17
QP
25

QP
30

21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

20

(a) Input picture slice map (b) Modified slice map

Fig. 4. When macroblock 20 is coded as skip, a QP of 30 is

assumed in (a) and a QP of 25 is assumed in (b). The QP for

MB 20 must be 30 to ensure perfect reconstruction.

IV - 286

Raw video
JM 10.1 (FMO)

A.264

B.264 C.264JM 10.1
(no FMO)

Add
FMO

Fig. 5. Setup to analyze loss in coding efficiency by adding

FMO to the compressed bitstream.

skip. Although MB 20 has no nonzero coefficients, a QP of

30 needs to be maintained since deblocking filter (thus, pixel

values) depends on QP. The solution is to encode the presence

of a coded block pattern (CBP), thereby enabling the encod-

ing of the QP difference. As the presence of a CBP signals

possible nonzero coefficients in four 4×4 blocks of the mac-

roblock, we explicitly code that each 4×4 block contains no

nonzero coefficients.

3. TRANSCODING OVERHEAD

In the previous section, we discuss the difficulty of impos-

ing an arbitrary slice map to a pre-compressed video, which

leads to some overhead in explicitly coding the macroblock

map. We also discuss how extra bits are necessary to preserve

QP for macroblocks that are skipped or have no CBP. This

overhead is not necessary when a video is directly encoded

with FMO. In this section, we analyze the overhead result-

ing from adding FMO to the compressed bitstream by ana-

lyzing the performance of the setup described in Fig. 5. Two

FMO patterns are examined: “checkerboard” and “alternate

lines” (where successive lines of macroblocks are assigned al-

ternately to 2 different slices). Please note that videos B.264
and C.264 result in identical reconstructed pictures that are

0 50 100 150 200 250 300 350 400 450 500
24

26

28

30

32

34

36

38

Rate (kb/s)

P
S

N
R

 (d
B

)

Foreman

JM
JM FMO checkerboard
JM FMO alternate
Transcoder FMO checkerboard
Transcoder FMO alternate

0 50 100 150 200 250 300
25

30

35

40

45

Rate (kb/s)

P
S

N
R

 (d
B

)

Mother & Daughter

JM
JM FMO checkerboard
JM FMO alternate
Transcoder FMO checkerboard
Transcoder FMO alternate

Fig. 6. Loss in coding efficiency by adding FMO in com-

pressed domain.

different from those of A.264, and that C.264 may only pro-

duce the desired FMO pattern approximately.

The results are shown in Fig. 6 for the 300-frame, 30 f/s,

CIF sequences Foreman and Mother and Daughter coded us-

ing constant QP. Except for the first frame, all the frames are

encoded as P-frames. We see that the performance penalty

is negligible (about 3%) at medium to high bit rates of over

500 kb/s for Foreman and over 250 kb/s for Mother and
Daughter. This is expected, as similar overhead is amortized

over a higher bit rate. On the other hand, there is a loss of

between 1.5 to 1.8 dB at lower bit-rates of about 100 kb/s

for Foreman and 40 kb/s for Mother and Daughter due to the

large percentage represented by overhead at those rates.

4. TRANSPORT IN CHANNEL WITH LOSSES

In this section, we consider the transport of compressed video

over a lossy channel. We use QuickTime Pro 7.1.3 to en-

code the 300-frame CIF sequences Foreman and Mother and
Daughter at different bit-rates. QuickTime does not allow the

user to specify slice structure and by default splits every pic-

ture into two slices as depicted in Fig. 1-(a). Only the first

frame is coded as intra. By using our scheme, we can add

different flavors of FMO to improve the error resilience of

the compressed video. Specifically, we employ the “checker-

board” and “alternate lines” schemes, and compare the result-

ing PSNR under different loss patterns.

The results are summarized in Fig. 7. The zero-loss rate-

distortion characteristics are given in Fig. 7-(a) and (b) for

Foreman and Mother and Daughter, respectively. Since the

“CheckerBoard” and “AlternateLines” videos are losslessly

modified from the original “QuickTime” video, the corre-

sponding operating points achieve identical PSNR, though the

FMO versions require more bits. In generating these graphs,

we include a copy of picture parameter set with each slice to

ensure the slices are decodable when received. This is a con-

servative approach since the picture parameter sets (PPS) can

actually be reused for different pictures with identical slice

maps, instead of transmitting multiple copies as in these ex-

periments.

Figures 7 (c)-(d) show the PSNR when the slices of the

different video are subject to random loss of 1% irrespective

of their coded size. The figures represent average results over

40 loss traces. As expected, we see that a large PSNR im-

provement is achieved by employing FMO. Specifically, for

Foreman, “CheckerBoard” and “AlternateLines” achieves a

PSNR improvement over “QuickTime” of about 2 dB and

1.3 dB, respectively. For Mother and Daughter, the gain is

smaller, between 1 dB and 0.5 dB, due to little motion which

is easily concealed by the motion-compensated concealment

of JM 10.1.

The above slice-loss results do not consider the effects

of packetization when a coded slice is too large to be trans-

ported within a single transport packet. In the following, we

IV - 287

100 200 300 400 500 600 700 800
28

30

32

34

36

38

Bit Rate (kbps)

P
S

N
R

 (
dB

)

QuickTime
CheckerBoard
AlternateLines
Split

100 200 300 400 500 600 700 800
38

39

40

41

42

43

44

45

Bit Rate (kbps)

P
S

N
R

 (
dB

)

QuickTime
CheckerBoard
AlternateLines
Split

(a) Foreman: no loss (b) Mother: no loss

100 200 300 400 500 600 700 800
26

27

28

29

30

31

32

Bit Rate (kbps)

P
S

N
R

 (
dB

)

QuickTime
CheckerBoard
AlternateLines

100 200 300 400 500 600 700 800
35

36

37

38

39

40

Bit Rate (kbps)

P
S

N
R

 (
dB

)

QuickTime
CheckerBoard
AlternateLines

(c) Foreman: 1% slice loss (d) Mother: 1% slice loss

100 200 300 400 500 600 700 800
26

27

28

29

30

31

Bit Rate (kbps)

P
S

N
R

 (
dB

)

QuickTime
CheckerBoard
AlternateLines

100 200 300 400 500 600 700 800
35.5

36

36.5

37

37.5

38

Bit Rate (kbps)

P
S

N
R

 (
dB

)

QuickTime
CheckerBoard
AlternateLines

(e) Foreman: 1% packet loss (f) Mother: 1% packet loss

100 200 300 400 500 600 700 800
26

27

28

29

30

31

Bit Rate (kbps)

P
S

N
R

 (
dB

)

Split
Split Mix

100 200 300 400 500 600 700 800
35.5

36

36.5

37

37.5

38

38.5

39

Bit Rate (kbps)

P
S

N
R

 (
dB

)

Split
Split Mix

(g) Foreman: 1% packet loss (h) Mother: 1% packet loss

Fig. 7. Comparison under different loss conditions for Quick-

Time generated videos with/without losslessly added FMO,

and with slices modified to fit transport packet sizes.

assume a maximum packet size of 1450 bytes so that larger

coded slices are fragmented into multiple transport packets,

and that a slice is decodable only when all of its constituent

packets are received. The PSNR for the different videos at 1%

packet loss rate are shown in Fig. 7-(e) and (f). We see that the

gain in PSNR of “Checkerboard” and “AlternateLines” over

“QuickTime” is comparable to that under slice-loss, but we

also observe that PSNR tends to decrease with increasing bit-

rate at the higher bit-rates. This “paradoxical” effect results

from the larger number of packets needed to transport one

slice, which reduces the probability that the complete slice is

received and therefore decodable. This suggests that at higher

bit rates, it is desirable to modify the slice map so that each

coded slice is roughly the size of the maximum packet size.

This is achieved by employing our scheme to losslessly form

slices smaller than a specified size, and the results are shown

as “Split” in Fig. 7-(g) and (h), where curves in Fig. 7-(e) and

(f) are shown in grey. We see that for Mother and Daugh-
ter, the PSNR of “split” does not decrease with increasing

data rate as expected. For Foreman, certain parts of the video

sequence contain a large region of spatially contiguous intra-

coded MBs. As discussed in Section 2.1, this prevents us

from breaking that region into multiple slices, causing a dip

in PSNR at high data rates, as observed in other schemes.

Further improvement is given by the “split-mix” scheme of

Fig. 7-(g) and (h) under which we attempt to use one row of

MB as a slice. A transport packet is then formed by aggregat-

ing multiple non-contiguous slices. We see that “split-mix”

outperforms “split” and “AlternateLines” as it improves er-

ror concealment over the former and reduces the use of slices

larger than the maximum packet size when compared to the

latter.

5. CONCLUSIONS

We present a scheme that losslessly modifies the slice struc-

ture of compressed H.264 video. The scheme allows trad-

ing off error resilience and compression-efficiency at stream-

ing time if desired, rather than when the content is created.

Notably, this transcoder allows FMO to be added to a com-

pressed bitstream. Such an operation involves recomputing

and re-encoding different quantities, such as quantization pa-

rameters or motion vectors that are coded differentially in the

bitstream. We show that for CIF video at 30 f/s our approach

results in negligible overhead, compared to direct encoding of

FMO, at medium to high bit-rates, but represents over 1 dB

loss in compression efficiency at low bit-rates. Our experi-

ments over a packet erasure channel show that adding FMO to

a compressed bitstream may improve the decoded video qual-

ity by over 2 dB in PSNR. We also show that by adjusting the

size of a coded slice to fit in a transport packet, improvements

over FMO schemes can be achieved. We demonstrate that the

two strategies above can be combined for further improve-

ment. We believe that the ability to efficiently and losslessly

add error-resilience to a previously encoded H.264 video can

be useful in a variety of situations.

6. REFERENCES

[1] ITU-T and ISO/IEC JTC 1, Advanced Video Coding for Generic
Audiovisual services, ITU-T Recommendation H.264 - ISO/IEC
14496-10(AVC), 2003.

[2] P. Lambert, W. De Neve, Y. Dhondt, and R. Van de Walle, “Flex-

ible macroblock ordering in H.264/AVC,” J. of Visual Commu-
nication & Image Representation, vol. 17, pp. 358 – 375, 1 2006.

[3] S. Wenger, “H.264/AVC over IP,” IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 13, no. 7, pp. 645–

656, July 2003.

[4] G. Reyes, A. Reibman, S. Chang, and J. Chuang, “Error-

resilient transcoding for video over wireless channels,” Journal
on Selected Areas in Comm., vol. 18, no. 6, 2000.

[5] “H.264/AVC Reference Software,”

http://iphome.hhi.de/suehring/ tml/download/, seen on Aug. 28
2005.

IV - 288

