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ABSTRACT

This paper presents a novel scheme for automatic initializa-

tion for all types of deformable models. Our method is able

to automatically generate a close-to-boundary initialization

which is independent of the subsequent segmentation pro-

cess. Therefore, our method enables different types of de-

formable models achieve more accurate and robust results.

Topographic Independent Component Analysis (TICA) based

feature exaction technique is presented for learning a rep-

resentation from a set of un-labeled image patches. During

learning, a topographic map of basis components emerge. An

intelligent contour generation procedure is also proposed. Ex-

perimental results on abdominal CT images demonstrate the

potential of our approach.

Index Terms— Automatic initialization, Deformable mod-

els, Topographic ICA, CT images

1. INTRODUCTION

Segmentation of anatomical structures from medical images

is often the first step in computer aided diagnosis. Further

analysis highly depends on the quality of the segmented struc-

tures. In recent years, geometric deformable models, or level

set methods [1][2], have been applied to medical image seg-

mentation with considerable success. Compared with the para-

metric deformable model, which is also known as snakes or

active contours [3], geometric deformable models are supe-

rior in many aspects and especially in handling topological

changes.

However, for both parametric or geometric deformable

models, an contour initialization is still required. This ini-

tialization is a major drawback of parametric models since

its capture range is very limited [14]. Although Xu [13] intro-

duces the gradient vector flow (GVF) which increases the cap-

ture range of a classic snake, the result could become unac-

ceptable under a slightly different initialization [6]. Even with

geometric deformable models, contour initializations still bi-

ases the final results [14]. Furthermore, a segmentation pro-

cess with an contour initialization that is not close to the bound-

ary/surface will take a very long time to converge to the right

state, especially in 3D cases [14].

A number of methods have been proposed ([4], [5], [6],

[7]) to solve the initialization problem. Tauber et al. [6] at-

tempted to utilize gradient vector flow to pre-segment the im-

age to obtain an initialization, while others tried to locate the

initial contour by subtracting two adjacent images from se-

quence images [7]. Some tried to use edge-detection or revise

the snake energy function [5]. Most initialization approaches

are highly dependant on specific segmentation techniques or

specific properties of the data sets. In the meantime, few of

these methods have used prior knowledge to guide the initial-

ization process [14].

In this paper, we introduce a novel scheme to obtain an

automatic initialization using prior knowledge. Unlike exist-

ing techniques, our method is independent of the subsequent

segmentation process and thus could be used for all segmenta-

tion methods based on deformable models. Prior knowledge

is incorporated naturally by a classification procedure.

The rest of the paper is organized as follows. In Section

2, we describe the proposed scheme for automatic contour

initialization with the usage of prior knowledge. In Section 3,

experimental results on abdominal CT images are presented

and discussed.We provide our conclusions in Section 4.

2. AN OVERVIEW OF THE PROPOSED METHOD

As detailed in the following sub-sections, our proposed scheme

involves three stages: 1. feature exaction and training, 2.

patch classification and 3. intelligent patch linking and con-

tour generation.

2.1. ICA-based modeling and subspace learning

Numerous techniques have been developed to extract features

from a set of training data. Principle component analysis

(PCA) is a popular unsupervised statistical method which is

able to learn useful data representations. It is often used to

find a basis set which is determined by the dataset itself. How-

ever, it can only decorrelate second order moments ([15], [16])

and important high-order relationships in a image will be ig-

nored. The more recent independent component analysis (ICA)
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is able to impose higher-order independence [17]. In [16], it is

shown that the trained ICA face representations were superior

to representations based on PCA for face recognitions.

In classic ICA, the basic model is constructed as a gray-

level image I(x, y) which is a linear superposition of basis

functions bi(x, y),

I(x, y) =
m∑

i=1

bi(x, y)si, (1)

where s = (s1, s2, . . . , sm) are stochastic coefficients, that

are different for each I(x, y). Given a sufficient number of

image patches I(x, y) in practice, the values of si and bi(x, y)
for all i and (x, y) need to be determined/estimated. If we

restrict bi(x, y) to form an invertible linear system, then this

system can be inverted as

si = 〈ωi, I〉 (2)

where the ωi denote the inverse filters and 〈ωi, I〉 denotes the

dot-product. The underlying assumption is that si are mutu-

ally independent random variables.

Topographic ICA(TICA) [11] is an extension to the clas-

sic ICA.In classic ICA, due to the independence assumption,

the independent components si have no particular order or

other relationships. However, in real applications, some esti-

mated independent components are dependent [15]. In TICA,

this assumption is relaxed. Components within a small neigh-

borhood are allowed to be correlated in their energies. A

neighborhood system [11] is adopted to define the range of

dependency. The topographic ordering is defined by the cor-

relations between the energies of the components [11].

cov(s2
i , s

2
j ) = E{s2

i s
2
j} − E{s2

i }E{s2
j} (3)

Estimating a TICA model can be achieved by maximizing

a likelihood function [11].As for implementation, we choose

one among the various algorithms available. The TICA soft-

ware downloaded from http://www.cs.helsinki.fi/u/phoyer/ is

used.

In our scheme, the training data set consists of a series of

gray-scale training images (N by N ), each with its manual

segmentation result stored in a separate black & white image.

Instead of resizing the training image to a M× M pixel

image, the input data Ik(x, y) are obtained by taking all M ×
M pixel image patch from all training images. Thereafter,

each image patch is converted to a vector using the row major

representation.

Before the exaction of independent components, the input

data Ik(x, y)needs to be preprocessed. It involves whitening

and dimension reduction using PCA. First, the mean gray-

scale value of each image patch was subtracted first. Then,

the data are low-pass filtered by reducing the dimension of

the vector by PCA. Next, the correlations between the com-

ponents of the data are removed by multiplying the data by

C−1/2, where C is the covariance of the data obtained from

PCA.

2.2. Patch classification

After the unsupervised extraction of independent components

using TICA, the estimated independent components will serve

as filters to extract features from image patches. Although

many sophisticated methods could be applied for patch classi-

fication,the results shown in this paper adopt the simplest pos-

sible classifier:nearest neighbor classifier. This is to show that

the filters learned are optimal and this scheme is not fully de-

pendent on the patch classification stage.With more advanced

classifiers, the classification performance are bound to im-

prove.

After a test image is presented, and the goal is to segment

the object of interest. First, all the M ×M image patches are

sequentially taken out. Each patch will be converted to a row

vector. Let it be referred to as x. Suppose s =[s1 s2 . . . sm]T

is the matrix containing the independent components and ω
=[ω1 ω2 . . . ωm] is the weight vector. Then

x = ω1s1 + ω2s2 + . . . + ωmsm. (4)

By solving this equation, ω could be determined.

Using the manual segmentation results for each training

image, we could label every training image patch. Suppose

we name those patches containing a portion of object bound-

ary contour-patches, those without any part of the boundary

background-patches. Then we could classify any new image

patch x into contour-patch class or background-patch class

using nearest neighbor classifier by comparing the Euclidean

distances between ωx and ωi from labeled image patches.

2.3. Intelligent patch linking and contour generation

With sufficient training examples, most background patches

and most contour patches will be correctly recognized. If we

let the labeled contour patch to be painted white. As can

be observed from Fig.2(b), most misclassified background

patches are not adjacent to each other(i.e.,they are not neigh-

bors under the 4-neighbor definition or the 8-neighbor defi-

nition). Even when they are adjacent, they can only form a

small connected group under a 4-neighbor or an 8-neighbor

definition. This phenomenon could be theoretically expected

since it is less probable the false-negative patches or the false-

positive patches can form large connected groups and make a

meaningful representation accordingly.

Inspired by this observation, the first step of processing is

to identify all connected groups for all the white patches (con-

tour patches) under a user-specified neighbor definition. In

this paper, we choose 8-neighbor definition since it could de-

scribe all the possible relationships between neighboring con-

tour patches. Different connected groups could be regarded as

different islands. Large island has a high probability to be a
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the true contour patch islands while smaller islands or even

one-patch islands are more likely to be a false-positive error.

According to this, we will set a threshold on the size of the

islands. If the size of one island is above this threshold, it will

survive.

After this procedure, only big islands survive. As in bi-

nary image processing,a thinning operation is then applied on

each island (patches are treated as pixels) to remove the am-

biguity for the contour generation processes. To generate a

close initial contour, they are connected together by linking

the closest endings of each thinned islands (Fig. 2). For sim-

plicity, we link the centers of two patches using a straight

line. Next, another thinning operation is performed to make

sure there is no ambiguity.

The problem now has been transformed to how to gener-

ate an initial contour from a group of connected patches. Nu-

merous methods could be developed to create a curve.In our

experiment, we simply link the geometric centers of every

two adjacent rectangular patches. For a more sophisticated

and smoother contour, we could use spline fitting techniques

[18].In the next section, we are showing an example of ap-

plying our scheme for spleen segmentation on abdominal CT

images.

3. APPLICATION TO ABDOMINAL CT IMAGES

Fig. 1. Example of placing a figure with experimental results.

A set of 30 abdominal CT images (512 × 512) with man-

ual segmentation results were used. 10 images were randomly

selected from 30 images and are treated as training images.

The rest 20 images served as test images. The size of each

image patch was experimentally set to 32 × 32 pixels. All

image patches were taken out from the training sets and each

patch was then arranged into one row. Mean gray-value of

each patch are subtracted. Then,the dimension of each vector

was then reduced to 160 by PCA. TICA was then performed

on a set of 16 × 16 × 10 = 2560 patches.

Fig. 1 shows 40 learned independent components (ba-

sis).As can be seen, meaningful independent components emerge

from unsupervised training on all image patches. Every four

basis from the same column span a small subspace. They look

much similar to each other than to basis from other columns.

All the 40 basis are used to exact features from a test image

patch. Table 1 gives the classification rate on all the test im-

age patches using a simple nearest neighboring classifier. The

Table 1. IMAGE PATCH CLASSIFICATION RATE
Contour Patches Background Patches

90.8% 93.6%

classification rate is slightly higher for background patches. It

may contribute to that there are much more training examples

available for background patches than for contour patches.

Fig. 2 shows different stages of generating an automatic

initialization contour on a test image. As can be observed,noise

and ambiguity are successfully removed by our smart patch

linking method. The simple polygon contour shown in Fig.

2(e) is very close to the boundary and therefore resembles the

final segmentation result shown in Fig. 2(f). The final result

shown in Fig. 2(f) is obtained using GVF snake [13]. Other

methods, like Level set based methods could be used as well.

4. DISCUSSIONS AND CONCLUSION

In this paper, we introduce a method which is able to automat-

ically generate an initial contour with prior knowledge and

which is naturally incorporated through a TICA-based learn-

ing and feature exaction scheme through the labeling/recognition

process.With TICA-based basis learning and feature exaction,

the high-order relationships are easily explored and the learned

independent components are “customized” to the training data

sets used. Our scheme is mainly designed for situations where

a close to boundary initialization contour is required. With

our scheme, algorithms that are sensitive to initializations are

able to achieve more accurate and robust results. Good results

are obtained when our method is applied on spleen segmen-

tation on CT images. Since this approach is independent of

the subsequent process, it can be applied to any segmentation

methods that requires initialization.
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