
SEMANTICS-BASED VIDEO INDEXING USING A STOCHASTIC MODELING APPROACH 
 

Yong Wei, Suchendra M. Bhandarkar and Kang Li 
 

Department of Computer Science, The University of Georgia, Athens, Georgia 30602-7404, USA  
E-mails: {yong, suchi, kangli}@cs.uga.edu 

 
ABSTRACT 

 
Semantic video indexing is the first step towards automatic video 
retrieval and personalization. We propose a data-driven stochastic 
modeling approach to perform both video segmentation and video 
indexing in a single pass. Compared with the existing Hidden 
Markov Model (HMM)-based video segmentation and indexing 
techniques, the advantages of the proposed approach are as 
follows: (1) the probabilistic grammar defining the video program 
is generated entirely from the training data allowing the proposed 
approach to handle various kinds of videos without having to 
manually redefine the program model; (2) the proposed use of the 
Tamura features improves the accuracy of temporal segmentation 
and indexing; (3) the need to use an HMM to model the video edit 
effects is obviated thus simplifying the processing and collection of 
training data and ensuring that all video segments in the database 
are labeled with concepts that have clear semantic meanings in 
order to facilitate semantics-based video retrieval. Experimental 
results on broadcast news video are presented.  
 
Index Terms— Video segmentation, Video semantic indexing, 
Hidden Markov Models  
 

1. INTRODUCTION 
 
Semantic video indexing is the first step towards automatic video 
browsing, retrieval and personalization. Semantic video indexing 
enables user to access videos according to their interests and 
preferences regarding video content. 
Definition 1: Semantic video indexing is the process of attaching 
concept terms to segments of a video. 

Semantic video indexing consists of two sub-processes, 
temporal segmentation of the video stream and semantic labeling 
of the resulting video segments. These two sub-processes are 
usually performed as two separate steps. In IBM’s VideoAnnEx 
video annotation system [1], the video stream is first segmented 
into shots. An annotator then manually associates shots with terms 
selected from a predefined lexicon. For large amounts of video 
data, the manual annotation process involves intense human 
interaction and is extremely time consuming. Automatic temporal 
video segmentation methods usually involve computing pixel-level 
and/or histogram-based difference measures for each pair of 
successive frames in the video stream and then using shot 
boundary detection techniques to locate the positions of shot 
boundaries [2],[3]. More advanced temporal segmentation 
techniques use sophisticated image features such as edges [4], 
focus of expansion points [5] and image motion [6]. However, just 
as a phoneme can appear in many different words, visually similar 
video shots can appear in different video segments with different 

semantic meanings. Thus video shot segmentation by itself cannot 
support content-based video retrieval at a semantic level.  
Definition 2: A video semantic unit is a video segment unit that 
can be associated with clear semantic meanings. 

Instead of detecting video shots, it’s more useful to recognize 
semantic units in the video stream. A semantic unit consists of a 
concatenation of semantically and temporally related video shots. 
In well organized videos, such as TV news broadcasts and sports 
programs, videos can be viewed as sequences of semantic units 
that are concatenated based on a video program syntax. 

In continuous speech recognition, the continuous speech 
resulting from a spoken sentence is modeled at both the acoustic-
phonetic (sub-word) level and the language level. In most modern 
speech recognition systems, these sub-word units are modeled by 
Hidden Markov Models (HMMs). In recent years, various 
applications of HMMs to video segmentation and annotation have 
been studied. Huang et al. [7] use both audio and visual features in 
an HMM-based scheme to perform video scene recognition. Li et 
al. [8] propose an HMM framework to detect play events in sports 
videos. Eickeler et al. [9] use an HMM-based predefined program 
model to index news programs. In the aforementioned works, 
however, the system performance could be compromised due to 
audio-visual mismatch [7] and inaccurate domain-dependent 
knowledge about the video program structure [8],[9]. 

In this paper, we propose a data-driven stochastic modeling 
approach to perform both video segmentation and indexing in a 
single pass. Inspired by the success of modern continuous speech 
recognition [10], a video stream is modeled at both the semantic 
unit level and the program level. For each semantic unit, an HMM 
is generated to model the stochastic behavior of the sequence of 
image feature emissions [9]. At the program level, a probabilistic 
grammar is generated by training on video data using maximum 
likelihood estimation. The grammar thus generated regulates the 
transitions amongst the semantic units. A concatenation of the 
HMMs based on the above probabilistic grammar constitutes the 
final search space for the video segmentation and indexing 
algorithm. To segment and classify semantic units in a video 
stream, the Viterbi algorithm (based on dynamic programming) is 
used to determine the optimal path, through the concatenation of 
the HMMs, which maximizes the likelihood of the observed 
sequence of image features emissions. The advantages of the 
proposed approach are as follows. 
• The probabilistic grammar defining the video program is 

generated entirely from the training data. In contrast to existing 
HMM-based video segmentation and indexing techniques [9], 
no domain-dependent knowledge about the structure of video 
programs is used. This allows the proposed approach to handle a 
wide variety of video types without having to manually redefine 
the program model. 
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• The use of the Tamura features improves the accuracy of 
temporal segmentation and indexing of the video. 

• The proposed data-driven approach does not need to use an 
HMM to model the video edit effects. Semantic unit level 
HMMs are used to model only video segments with clear 
semantic meanings. This not only simplifies the processing and 
collection of training data, but also ensures that all video 
segments in the database are labeled with concepts with clear 
semantic meanings thus facilitating semantics-based retrieval. 

The rest of the paper is organized as follows. Section 2 
describes the image features used in the construction of the video 
semantic unit level HMMs. In Section 3 we describe the 
construction of HMMs for the semantic units, and the organization 
(via concatenation) of the individual HMMs based on a video 
program model. The data-driven approach for learning the video 
program model is detailed. Section 4 explains the performance 
measures used and the experimental results. Section 5 concludes 
our work with an outline for future research. 
 
2. IMAGE FEATURES FOR SEMANTIC UNIT HMMs 
 
Applications of HMMs to video segmentation and indexing have 
been reported in recent literature [7],[8],[9]. A successful HMM-
based video segmentation and indexing scheme depends greatly on 
the selection of a suitable multi-dimensional feature vector to 
represent each image frame in the video stream. In most existing 
HMM-based video segmentation and indexing techniques, the 
dynamic characteristics of the image frames comprising the video 
stream, are captured using differences of successive image frames 
at both, the pixel level and the histogram level. Various motion-
based measures describing the movement of the objects in the 
image frames are used, such as the location of the image centroid 
and intensity of motion. Measures of illumination changes at both 
the pixel level and the histogram level are also included in the 
multi-dimensional feature vector. A detailed description of these 
features is provided in [9]. 

In the proposed approach, in addition to the aforementioned 
category of image features, Tamura features [11] are used to 
capture the textural characteristics of the image frames at the level 
of human perception. Tamura contrast, Tamura coarseness and 
Tamura directionality have been used successfully in content-based 
image retrieval [12]. In our work, these features improve 
significantly the accuracy of temporal segmentation and indexing. 

 
3. HMMS FOR VIDEO SEGMENTATION AND 

INDEXING 
 
3.1. HMMs for Video Semantic Units 
In our semantics-based video segmentation and indexing system, 
we define a semantic unit for each of the following six semantic 
concepts, i.e., News Anchor, News, Sports News, Commercial, 
Weather Forecast and Program Header. Representative images for 
each of these semantic concepts are shown in Fig. 1. 

An HMM is established for each individual semantic unit. 
The HMM parameters for each semantic unit are optimally learned 
using feature vector sequences obtained from the training video 
sets. In our approach, the HMMs for individual semantic units are 
trained separately using the training feature vector sequences 
described in Section 2. This allows great flexibility in being able to 
accommodate various types of video data. When new video data 
for a semantic unit are presented, we only need to retrain the 

corresponding HMM for the relevant semantic unit without having 
to retrain any other HMM in the overall system. We choose a 
universal left-to-right HMM topology with continuous 
observations of the emissions. The number of Gaussian mixture 
components in these HMMs is chosen to be three in our 
implementation. The reason for these choices is that in actual video 
data, little is known about the underlying physical processes which 
generate the observable visual features in the video stream. Using 
the above choices as default makes it easy to build semantic unit-
level HMMs for unknown data [9]. 

 
Fig. 1 Representative Image Frames of Semantic Units 

From Left to Right: News Anchor, News, Sports News, 
Commercial, Weather Forecast and Program Header 

In real video programs, there are many different kinds of 
transitional scenes used to connect the major scenes. Examples of 
transitional scenes include cuts, fades, zooms and pans. A large 
number of transitional states corresponding to these transitional 
scenes are typically used to connect the simple HMMs 
corresponding to the major scenes [9]. However, these transitional 
scenes are highly domain dependent and difficult to classify in 
terms of their semantic content. In our approach, semantic 
concepts are not attached to these transitional scenes; only 
semantic concepts with clear definitions are used. This not only 
improves the robustness and generality of our system in terms of 
its ability to handle a large variety of videos, but also simplifies the 
training data collection process. 
 
3.2. Concatenation of HMMs for Video Program Model 
The proposed single pass video segmentation and indexing 
procedure is formulated in terms of the following Bayesian 
decision rule:  Given a sequence of image feature vectors, 
determine a video semantic unit sequence such that  

))...|...Pr()...max(Pr(~))...|...max(Pr( 11111 NTNTN UUffUUffUU •  (3.1) 

where 
Tff ...1

are image feature vectors extracted from the image 

frames in the video stream to be segmented and indexed and 
)...Pr( 1 NUU is the video program model. 

The video program model regulates the transition probability 
from a predecessor semantic unit to a successor semantic unit. The 
individual HMM for each semantic unit models the stochastic 
behavior of the sequence of image features within the scope of the 
semantic unit. At the boundary of the semantic unit, the transition 
probability follows the video program model given by )...Pr( 1 NUU . 

The search space for the single-pass video segmentation and 
indexing procedure is the concatenation of the individual HMMs 
for the semantic units. A Viterbi algorithm is used to determine the 
optimal path in the HMM concatenation. Fig. 3 depicts an example 
of single-pass video segmentation and indexing with semantic 
concepts A, B and C. The y-axis represents the hidden states within 
the HMM for an individual semantic concept. The bold curves in 
Fig. 3 depict the state transitions within the video semantic units A, 
B and C. The video stream in the example is segmented into a 
semantic unit sequence BACBA. Bold curves within a semantic 
unit are monotonically non-decreasing since the HMMs 
corresponding to the individual semantic units have a left-to-right 
topology, i.e., no backward state transitions are permitted. 

In this work, a pure data-driven approach is taken to estimate 
the video program model directly from the training data using 
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sequential maximum likelihood estimation, i.e., no domain-
dependent knowledge about the structure of video programs is 
used. Most researchers typically use domain-specific knowledge 
about the video program in order to determine the video program 
model [7],[8],[9]. This knowledge-driven approach becomes 
untenable as the size of the semantic unit vocabulary and the 
complexity of video program increase. The inaccuracy in the 
estimation of the video program model directly affects the 
segmentation and indexing results. The video program model in 
this work is represented as a 2-gram model [13] for the purpose of 
efficient training. The training data for learning the video program 
model is assumed to be manually pre-labeled. 

 
 

Fig. 2 Concatenation of HMMs of 3 Video Semantic Units 
 

 
Fig. 3 An Example of Video Segmentation and Indexing with 3 

Semantic Concepts A, B and C 
 

 
Fig. 4 Frame Number vs. Recognized/Ground Truth Video 

Segments and Labels 
 

4. EXPERIMENT RESULTS 
 
Two hours of TV broadcast video streams were recorded and 
digitized at a frame resolution of 180×120 pixels and frame rate of 
30 frames per second. We chose the category of TV broadcast 
videos since they contain a large number of fairly diverse video 
segments which do not show a bias for or against the proposed 
video segmentation and indexing approach. 

Sixteen minutes of the video was reserved for testing. For 
generation of training data, the remainder of the video data were 
manually segmented into the six semantic categories, i.e. News 
Anchor, News, Commercial, Program Header, Weather Forecast 
and Sports News and denoted by semantic concepts 1 through 6 
respectively. A multi-dimensional feature vector was extracted for 
each image frame in the training video. For each of the six 
semantic units, a left-to-right HMM with continuous emission of 
observations was trained using feature vector sequences derived 
from the training video. To estimate the 2-gram video program 
model, the training video was manually labeled with labels selected 
from the aforementioned six semantic concepts. 

The performance measurements for the above single-pass 
video segmentation and indexing scheme comprised of two 
aspects, boundary detection performance and video segment 
classification performance. To measure the performance of video 
segment boundary detection, parameters such as insertion rate, 
deletion rate and boundary detection accuracy [14] were used. 
These parameters are defined as follows. The insertion rate denotes 
the fraction of unassigned boundaries in the detected boundaries. 
The deletion rate denotes the fraction of missed boundaries in the 
ground truth sequence boundaries. The boundary detection 
accuracy measures the average shift (in terms of number of frames) 
between the detected boundary and actual boundary locations. 

ected

inserted
insertion boundaries

boundaries
R

det

=
 (4.1) 

actual

missed
deletion boundaries

boundaries
R =

 (4.2) 

actual
B boundaries

frames
Accuracy

Δ
=

 (4.3) 

Δframes  is the amount of shift (measured in terms of number of 

frames) between the detected boundary location and the actual 
boundary location. 

To measure the video segment classification accuracy, the 
correct video segmentation classification rate is defined as 

falsecorrect

correct
C SS

S
Accuracy

+
=

 (4.4) 

where
corrects is the number of correctly indexed segments and 

falses is the number of incorrectly indexed segments. In our 

experiments, some incorrectly indexed segments were observed to 
be very short. These short segments contained a very small fraction 
of the total number of image frames in the video stream. Thus, the 
measure

cAccuracy by itself does not reflect the classification 

performance because it treats these very short and incorrectly 
classified segments on par with the relatively long and incorrectly 
classified segments. Hence in order to measure the number of 
image frames that are correctly classified, we used a frame-based 
measure to determine the fraction of correctly classified image 
frames in the total number of frames as follows:  

falsecorrect

correct
F framesframes

frames
Accuracy

+
=

    (4.5) 

where
correctframes and 

falseframes  are the numbers of correctly 

classified and incorrectly classified image frames respectively. The 
algorithm provided by the author of [14] was used to compute 
performance measures in equations (4.1)-(4.4). 

In Fig. 4, the recognized semantic label sequence and the 
ground truth semantic label sequence are plotted against the frame 
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number for the entire test video segment. The single-pass video 
segmentation and indexing algorithm is observed to detect most of 
the segment boundaries and label them correctly, except for some 
portions of the commercial segment which are incorrectly 
classified.  In Tables 1 and 2, the numerical measures of 
performance for the single-pass video segmentation and indexing 
algorithm are tabulated. Fig. 4 shows that most of the inserted 
boundary detection and false segment classification occurs during 
the commercial segment (semantic concept ID=3). This is because 
of the complex nature of the content of TV commercials. In TV 
commercial programs, there could be large video segments that are 
visually similar to those found in the other semantic units such as 
News Anchor and Sports and hence classified incorrectly. 
 

5. CONCLUSIONS 
 

Well structured video programs, such as TV news broadcasts and 
sports videos can be modeled at both, the program level and the 
video semantic unit level, analogous to the language level and 
acoustic word level in the case of speech recognition. 

For each video semantic unit, an HMM is established to model 
the image feature vector emission process within the scope of the 
semantic unit. In our work, only semantic concepts with clear 
meanings are used. Transitional scenes are not modeled using 
HMMs. The 2-gram video program model defines the transition 
probabilities amongst the video semantic units. With increasing 
complexity of real video programs, a domain knowledge-
dependent definition of a video program model becomes 
untenable. In our approach, the data-driven maximum likelihood 
estimation of the 2-gram program model from training data yields 
very good results. The use of the Tamura features improves the 
accuracy of temporal segmentation and indexing. The individual 
HMMs for the semantic units are concatenated based on the video 
program model. The data-driven single-pass video segmentation 
and indexing algorithm determines the optimal path through the 
HMM concatenation. In doing so, the video stream is segmented 
and indexed in a single pass. Experimental results show very good 
accuracy in terms of both boundary detection and segment 
classification. The proposed scheme is scalable and extensible 
since the program model can be altered by addition, deletion and 
modification (via retraining) of the HMMs corresponding to the 
relevant semantic concepts without having to retrain or alter the 
HMMs corresponding to the other semantic concepts.  

Future research would apply the single-pass video segmentation 
and indexing algorithm to a wide collection of video data to test its 
robustness and extensibility. The effectiveness of the n-gram 

language model for 2>n  needs to be further explored in the 
context of modeling of video programs. 
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Table 1. Performance Measures for Video Segmentation 
Actual Boundaries Detected 

Boundaries 
Inserted 

Boundaries 
Deleted 

Boundaries 
Insertion Rate (%) Deletion Rate 

(%) BAccuracy (Frame) 

29 36 7 0 7/36=19.4 0/29=0 55/29=1.9 
 

Table 2. Performance Measures for Video Segment Classification 
Correctly Classified 

Segments 
Incorrectly Classified 

Segments CAccuracy (%) Total Number of 
Frames 

Correctly Classified Frames 
FAccuracy (%) 

32 5 86.5 28898 514 28384/28898=98 
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