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ABSTRACT 
 
In this paper, we proposed a novel algorithm to detect blood 
vessels on retinal images. By using directional local 
contrast as its detection feature, our algorithm is highly 
sensitive, fast and accurate. The algorithm only needs 
integral computing with very simple parameter adjustments 
and highly suitable for parallelization. It is much more 
robust to illumination conditions than intensity based 
counterparts and equally effective for large and small blood 
vessel detections.  

Traditional blood vessel mapping solutions focused on 
detecting the most number of blood vessel pixels at the cost 
of least number of falsely identified background pixels. This 
performance criterion works for well illuminated images 
with sharp boundary, but it does not address two major 
concerns. The first is that it favors detection of large blood 
vessels, and the second is that for darker images (due to poor 
illumination or pigment colors) it can be very difficult to 
generate hand traced maps. To overcome these problems, we 
propose using central lines of the blood vessels as a new 
performance measure for blood vessel mapping. The new 
performance measure is easy to evaluate, and it 
complements the existing performance measure.  
Experiment results on two public retinal image databases 
show that our algorithm outperforms two well known 
existing algorithms in terms of speeds and accuracy. 
 
Index Terms— directional local contrast, blood vessel 
detection, retinal images 
 

1. INTRODUCTION 
 
Automated mapping of the blood vessel network is an 
important function for assessment of the anatomy and 
pathology of the blood vessel system. Its applications range 
from long term tracking of vascular changes that could be 
caused by chronic diseases such as diabetic retinopathy, 
hypertension, etc., and detection of acute leakage conditions.  
This is particularly useful for disease conditions that are 
small in sizes, and located at close proximity of blood 
vessels, e.g., microaneurysms.  

Many solutions have been proposed in the literature [1]-
[6], most of which use the green channel of retinal images 
for blood vessel detection, because it contains most of the 
blood vessel information. A major challenge faced by blood 
vessel mapping algorithms is the tradeoff between 
computing time, detection accuracy and robustness with 
respect to the photo qualities. The (truncated 2D Gaussian) 
matched filter solution proposed in [1]  pioneered the model 
based mapping of blood vessels using the intensity. In our 
previous work [2], we proposed the algorithm that first uses 
illuminant equalization and image enhancement techniques 
to improve the image quality, then starting from 
automatically found initial points, tracking down the vessel. 
Hoover et al [3] proposed to segment vessels by piecewise 
threshold probing on the filter response of the Gaussian 
templates [1]. Morphological filters and cross-curvature 
were used in [4] to segment vessels for both red-free 
angiography images and color images. In [5], vascular 
ridges extracted from derivatives of a Gaussian function are 
used as the analysis features to obtain highly accurate results, 
but this method is computationally expensive. A fast 
algorithm proposed in [6] maps vessels from multiple 
localized thresholding results based on the geometric 
properties of vessels. This method is highly effective for 
large vessel detection but less accurate for small vessels.  

While most images available in the public databases 
have excellent illumination conditions, images acquired 
from the field do not always have good illumination because 
of disease conditions, non-mydriatic procedures, and 
pigment colors of the subjects. These conditions make 
intensity based algorithms susceptible to the data conditions, 
especially when complex parameter setting is required for 
the algorithms. To overcome this problem we propose using 
local contrast information for mapping of blood vessels in 
retinal images. In the green channel of the retinal images, 
blood vessels are linear objects that have lower intensity 
values than their background. A blood vessel segment is 
modeled as a linear segment with constant width. A vessel 
pixel being tested must lie on a blood vessel-shape (BVS) 
kernel that is a line of pixels that falls inside the vessel 
segment. If a BVS kernel that satisfies specific condition can 
be found for a pixel, it's determined as vessel pixel, or it's 
marked as background pixel. The BVS kernel model implies 
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directional search, and therefore tracing of the vessel flow is 
directly integrated with the contrast analysis step at no 
computing cost.  

  
 

2. CONTRAST BASED BLOOD VESSEL DETECTION  
 
Among several different options, we adopt the Weber’s 
contrast measure /C I I= Δ  as the basis to compute the 
directional local contrast (DLC), where I is the local 
background intensity, IΔ  the intensity difference between 

the pixel under consideration and I. Let 
p

I  denote the 

intensity of a pixel p. p’s DLC along θ direction is defined as:  
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I θ  is the background intensity of p in its θ directional 

neighborhood ( )
pN θ  with size r (See Figure 1 (a)). Negative 

DLC value indicates that the pixel under consideration has 
lower intensity than the background along the direction. 
Some pixels adjacent to p may have to be excluded for DLC 
measurement when p is located near to the boundary of the 
blood vessel, as it will become clear shortly.  

A blood vessel-shape (BVS) kernel is a set of pixels in a 
linear line, and its length represents the shortest blood vessel 
to be detected (denoted by L), see the illustration in Figure 1 
(b). The length of BVS kernel controls the detection 
resolution on the shortest blood vessel that can be detected. 
Increasing (Decreasing) the L value will reduce (increase) 
the false positive rate but the algorithm will be less (more) 
sensitive.  

In determining if a pixel p is on a blood vessel, the BVS 
kernel originated from p spans along different directions to 
locate a vessel segment. If p is on the blood vessel segment 
that flows along direction θ, pixels on the BVS kernel of 

direction θ (denoted by ( )

p
B θ ) satisfy the condition that they 

all have negative DLCs along direction / 2θ π± , i.e., for all 
( )

p
q B θ∈ �  ( / 2 )

q
C Tθ π± ≤  , where T  is a given non-positive 

threshold, in ideal case. The blood vessel direction θ is 
known if such a BVS kernel can be found. If no such BVS 
kernel exists, p is considered a background pixel. 

To reduce errors caused by noise, most commonly 
improper exposures, in this paper the decision rule above is 
relaxed as “p is a blood vessel pixel if there exists a BVS 

kernel ( )

p
B θ  that for α% of all pixels ( )

p
q B θ∈ �  

( / 2 )

q
C Tθ π± ≤ ”. The values of x and T are discussed later in 

this section. 
 

     
(a)           (b) 

Figure 1. (a) A DLC measurement neighborhood of an image pixel, 
and (b) the BVS along θ of pixel p and DLC measurements in the 

BVS along directions / 2θ π± . 
 
The DLC definition works well in most cases, but when 

checking a pixel p  around the edge of a blood vessel, its 

DLC along the direction pointing to the vessel is heavily 
affected by the vessel because some of p ’s neighbors used 

for computing DLC are not on the background, but on the 
vessel. To solve this problem, first W  pixels adjacent to p 
are not included in the DLC computation as follows:  

( ) {( , ) | cos , sin }p q q q p q pN x y x x k y y kθ θ θ= = + = + where 

1..k W r= + , and W  is the maximal vessel diameter.  
The resulting DLC based vessel detection rules can be 

summarized as follows. 
  

1. Set parameters for large vessels. 
2. For every pixel p , analyze its DLC along n 

directions. If there’s a direction θ  such that 
( / 2)

p
C Tθ π± ≤ , and if ( / 2)

q
C Tθ π± ≤ for x% of q  in p ’s 

L-pixel long BVS kernel ( )

p
B θ , mark p  as vessel 

pixel. Otherwise mark p  as background pixel. 

3. Set parameters for small vessels, and rerun step 2. 

Figure 2 Blood vessel pixel detection procedure 

Only five parameters r ,  L , T, α, and the number of 
directions n  to search for blood vessels at each pixel need 
to be considered. Selection of the value r  needs to be larger 
than the width of blood vessels under consideration so that 
both background and the blood vessel pixels can be captured 
in each DLC measurement. In 700 600×  retinal images the 
width of small vessels ranges from one to three pixels and 
that of large vessels four to ten pixels, i.e., W=3 and W=10 
for small and large vessels, respectively. As a result, the r  
value was set at five and 15 respectively for small and large 
vessels.  The value of L  is determined by the shortest blood 
vessel segments to be detected. Two different values ten and 
15 are found to be suitable for small and large vessels, 
respectively.   
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Figure 3 The interdependency between L, w, and θΔ .  

The number of search directions at each pixel is 
determined by the detection resolution of large and small 
vessels. Let w  denote the smallest width of the vessels 
under consideration, the angular change θΔ  between two 
adjacent BVS kernels should be small enough so that any 
blood vessel segment can be covered by one or more 
adjacent BVS kernels, see Figure 3.  When θΔ   is 
small, sinL wθΔ ≈ , /w LθΔ ≈ , and therefore 

2 / 2 /n L wπ θ π= Δ ≈ . In our study, it is found that 
32n = and 16 are adequate for small and large vessels, 

respectively. 
The contrast threshold value T determines the lowest 

level of contrast of the blood vessels that can be detected by 
the algorithm. When it is set to a value closer to 0, numerous 
linear patterns can be capture but a significant number of 
false detections are expected. Instead, we found that 
Weber’s Just-Noticeable-Difference (JND) [8], 2% (or, 
0.02), which defines the smallest visual difference that is 
perceivable by the human eyes, is a much better choice for 
small blood vessels, i.e., 0.02T = − for small vessels. 
However, for large vessels, due to their high contrast against 
the background and to avoid high positive false alarms 
around the boundary of large vessels, 0.05T = −  was found 
to be a more suitable threshold value. α is the error tolerance, 
the smaller the value, the larger the tolerance is. Usually α% 
should be near 1 to avoid too much false alarm. In this work, 
we set α=80. 

 
3. EXPERIMENT RESULTS 

 
We applied our algorithm on two widely used retinal image 
databases STARE [2] and DRIVE [5], and compared the 
mapping results with those in two recently published papers 
[5][6]. The detection outcomes of different algorithms on 
two sample images are show in Figure 4.  

The algorithm is found to be highly sensitive. It can 
capture the linear pattern that has the just-noticeable-
difference from the background. In evaluation of the 
detection performance of the proposed algorithm, we do not 
follow the pixel count based performance measure proposed 
in [2] because it strongly favors detection of large blood 
vessels and therefore not an effective measure in assessing 
an algorithm’s ability in detection of small vessels. In stead, 
we propose a performance measure based on detection of  
 

 

 

 

 

(a)   (b) 

Figure 4 Detection outcomes for (a) im0082 in STARE and (b) test 
image 00 in DRIVE. In (a), the top graph is Jiang's detection map, 
the middle graph is that of ours, and the bottom one the 2nd 
manually labeled map (label-vk) in STARE. In (b), the top graph is 
Staal's detection map, the middle graph that of ours, and the bottom 
graph the 2nd manually labeled map. 

visible blood vessel count. Each blood vessel can be 
represented by its central line, which can be obtained by 
applying any thinning algorithm on the detected blood vessel 
map, e.g., [9]. Given that assessment of the blood vessel 
boundary is highly subjective, as one can see from the two 
set of manually drawn blood vessel maps in STARE and 
other sources, the proposed new performance measure can 
avoid this problem in evaluation of both large and small 
vessels detection.  

Let 
t

M  denote the ground truth, M  denote the 

automatic detection outcome. The true vessel positive rate 
and false vessel positive rate of the new performance 
measure are defined as follows.  
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where ( )  is the length of the central line. 
t

C  and C  

denote the central line of 
t

M  and M , respectively. This 

definition has a similar format as those in [2], when ( ) is 

replaced by pixel count of the whole vessel.  
Using the new performance measure we compared the 

performance of our algorithm with that of Jiang's algorithm 
on STARE (ground truth: labels-vk), and with that of Staal's 
algorithm on DRIVE (ground truth: 2nd manual). And the 
result is summarized in Table 1.  

Table 1 True and false positive rates of different algorithms based 
on central line detection. 

Data scheme TVPR(%) FVPR(%) Time(s) 
Jiang's[6] 54.09 0.13 8 

STARE 
Ours 81.06 0.87 7 

Staal’s [5] 82.2 0.54 900 
DRIVE 

Ours 82.6 0.45 5 
 
The proposed new performance measure represents a 

new approach to evaluate blood vessel detection algorithms.  
In the pixel based performance measure, a single pixel width 
difference in large blood vessel boundary can lead to 
significant performance results. It is also much more useful 
in assessing the performance of small vessel detection, 
which is crucial to automated analysis of micro-vascular 
changes, e.g., neovasculization detection.  

In addition to its high sensitivity, a major advantage of 
the proposed algorithm is its simplicity, speed and ease of 
parallelization. The calculation of DLC’s of every pixel and 
decision procedure for every pixel can both be done 
independently. The key step in the algorithm is to compare 
the directional local contrast to a given threshold T , i.e., to 
check if the following inequation is true: 
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Through some simple algebraic manipulations, the 
computation can be translated into the inequality condition: 

( )

( (1 ) ) 0
p

p q

q N

I T I
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The value of 
q

I is in range [0, 255], T  is usually fixed for 

specific photo taking equipment, thus a lookup-table 

technique is feasible to hold rounded values of (1 )
q

T I+ , so 

that  only integer add/subtract operations would be needed 
for fast implementation.  
 

7. CONCLUSION 
 

In this paper, we introduced a simple, fast, highly 
sensitive algorithm for mapping of blood vessels, based on 
directional local contrast in retinal images. The algorithm is 
faster and more accurate than two recently published 
algorithms.  With minor modifications to the shape 
descriptor, the algorithm can be expanded to detect other 
objects in retinal images, e.g., microaneurysms. For a pixel p 
on microaneurysm, if we set the neighborhood size large 
enough to reach outside the microaneurysm, p ’s DLC’s 

along all directions should be less than T . So the decision 
rule of microaneurysm is: a pixel p is microaneurysm pixel if 

( )

p
C Tθ ≤  for all directions. Preliminary results show that 

this approach is promising. More comprehensive study is 
being pursued to make the algorithm complete and robust.   
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