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ABSTRACT

The orientation correlation function is a measure of the spatial
range over which nanoscale structures maintain their struc-
tural (orientational) similarity. In this paper we describe an
image processing system that is used to estimate this correla-
tion function from electron microscope images of the chemi-
cally patterned nanoscale structures. We describe the estima-
tion of a robust orientation eld from the image and the sub-
sequent estimation of the correlation function from the orien-
tation eld. We present results that have been obtained using
our image metrology system. Sensitivity of the estimated val-
ues with respect to the image processing parameters is also
presented.

Index Terms— Image based metrology, Image process-
ing for nanoscale, Orientation estimation, Applications.

1. INTRODUCTION

Self assembly [1] of block co-polymers on chemical substrates
is a technique that holds great potential for the design of geo-
metric structures at the nanoscale. Quantitative information
that measures the degree of local geometric self-similarity
will help understand the effect of long-range and short-range
interactions on the organization of the nanostructures. In this
paper we describe an image based metrology system that cal-
culates the orientation correlation function which is a useful
characterization of the local self-similarity of geometric struc-
tures.

The orientation correlation function measures the similar-
ity in orientation between a pair of points that are a particular
distance apart. A fast decrease in the values of the correla-
tion function with respect to distance suggests dominance of
short-range effects, whereas the dominance of long-range ef-
fects is implied by a slow decrease in the correlation func-
tion. Electron microscope images of the nanostructures can
be used to estimate the correlation function and make infer-
ences about the spatial range of the local similarity. Intu-
itively, the more the “twists and turns” in the structures the
greater the rate at which the correlation function decays. In
the example images shown in gure 1, obtained by using an

electron microscope, it can be expected that the similarity in
orientations between two points in the left most image is high
over larger distances (the correlation function of the image
decays slower) than in the right image. Thus the correlation
function captures the information about the local geometric
similarity of the nanoscale structures.

The rest of the paper is organized as follows: Section 2 de-
scribes the orientation correlation function and explains how
the results of standard image processing algorithms must be
interpreted and used in the context of the nanoscale structures.
The estimation of the local orientation image, a key step in
the correlation function calculation, is described in section 3.
The estimation of the orientation correlation function and the
correlation length is explained in 4. We conclude the paper
with a discussion of the results obtained using our system in
section 5.

(a) (b) (c)

Fig. 1. Example images of the nanostructures we are study-
ing. Rate of decay of orientation correlation function in-
creases from the left to right image.

2. ORIENTATION CORRELATION FUNCTION

The order parameter at a point, λ, is a quantity that is used
to characterize the local geometric structure. It is a function
of the angle between the tangent line to the ridge structure
at the point of interest and the reference line. The correla-
tion function provides information about the similarity in the
order parameter between any two given points that are sepa-
rated by a particular distance [7]. The order parameter for the
nanopatterns that we wish to analyze must thus be related to
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the local orientation θ of the ridge-like structures [3].
The application of gradient lters [10] to the image gives

orientation estimates that are directed normal to the edges or
along the direction of maximum intensity change. The orien-
tation estimates at the two edges of the same ridge will differ
by 180◦ (see gures 2 (a) and (b)). This difference in the es-
timated orientation at opposite edges of a ridge-like structure
must be handled (see section 3) correctly. Another issue that
must be addressed is the non-uniqueness in direction of travel
along a ridge (there are two possible directions). We handle
this degeneracy by de ning the order parameter to be twice
the local orientation estimate, i.e., λ = 2θ. The calculation of
the continuous vector and the subsequent use of the order pa-
rameter as de ned above helps resolve these ambiguities. The
correlation function depends on the minimum angle through
which the tangent line to the ridge structure at a point must
be rotated to make it parallel to the tangent line at any other
point and the distance between the two points.
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Fig. 2. (a) Gradient directions obtained from image process-
ing techniques are along the edge normal and only at places
where the intensity change is large. Points A and B, where
the intensity change is large, are at the edges of the same ridge
but have orientations that differ by 180◦. Points C and D in
the interior of the ridge may be assigned incorrect direction
estimates. (b) The required orientation estimates at the points
A, B, C, D. The low pass ltering (see section 3) provides
fairly correct values for the interior points C, D.

3. LOCAL ORIENTATION ESTIMATION

In this section and in the remainder of the paper we will use
bold capital alphabets (e.g. Θ,Φs, I) to represent images and
regular font alphabets (θ, I, φs resp.) to represent the pixel
value at a generic position p = (x, y).
The horizontal and vertical gradient images Dx and Dy are
obtained by the convolution (represented as ∗) of a Derivative-
of-Gaussian lter with the input image, I,

Dx = ∂x(σ1) ∗ I, andDy = ∂y(σ1) ∗ I. (1)

The convolution of the image I with the DoG lter ∂x(σ1)
(resp. ∂y(σ1)) is equivalent to smoothing the image with a
zero mean Gaussian lter with variance σ2

1 and then taking

the nite differences of the smoothed image in the horizontal
(resp. vertical) direction. The horizontal and vertical gradi-
ents are used to calculate the imagesΦs andΦc whose entries
are given by

φs =
2DxDy√

DxDy + (DxDx −DyDy)2

φc =
DxDx −DyDy√

DxDy + (DxDx −DyDy)2
. (2)

The terms DxDx, DyDy are the variances of the local gra-
dient and DxDy is the covariance. The images Φs and Φc

together are called the continuous vector eld equivalent of
the orientation image [2] and the pixel entries are equivalent
to sin(2θ) and cos(2θ) respectively To make the extraction of
the orientation image robust to noise, corrupted ridge struc-
tures, minutiae etc, we low pass lter the continuous vector
elds:

Φ′
s = G(σ2) ∗Φs, Φ′

c = G(σ2) ∗Φc, (3)

where, G(σ2) is a zero mean Gaussian lter of variance σ2
2 .

The entry at position (x, y) of the orientation image is esti-
mated as:

θ(x, y) =
1
2

tan−1

(
φ′
s(x, y)
φ′
c(x, y)

)
. (4)

Note that the low pass ltering facilitates the assignment of
sensible values for the orientation even in regions where the
edge strength is small, i.e, center of the ridge like structures
(as desired). Results show that our method produces orien-
tation elds that are comparable in accuracy to other existing
methods [2, 6, 5, 8, 9].

4. CORRELATION FUNCTION ESTIMATION

The correlation function is measure of similarity of the order
parameter between pixels that are separated by a distance r.
At each pixel in the image we calculate the “average” similar-
ity of pixels at certain predetermined distances. The similarity
values are averaged over all the pixels in the image and an ex-
ponential decay function is t to the average-similarity values
versus separation distance data. The correlation length (de-
ned below) is calculated from the tted exponential decay

function.
Given the orientation image Θ we can calculate the order
image Λ using the mapping λ(x, y) = 2θ(x, y). Let ri =
iδr, i = 1, . . . , Nr be a set of predetermined distances.
Consider an arbitrary pixel p with the order parameter value
λ. We sample the order image at Na equally spaced points
that are a distance ri from p (see 4). The similarity measure
si(p) of pixels that are a distance ri from p is given by

si(p) =
1
Nθ

j=Na∑
j=1

〈v(λ),v(λij )〉, (5)
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where, λij is the order parameter value at the j-th sample at a
distance ri from p, v(λ) is the unit vector (cos(λ), sin(λ)).
〈a,b〉 represents the dot product between the vectors a and
b. The dot product is 1 when the order values λ and λ i

j are
the same and it is −1 when they differ by 180. Thus the sum-
mation in equation 5 measures the average similarity of pixels
that are a distance ri from the pixel p. The similarity metric
si(p) is calculated for each ri at all the pixels. We calculate
the average of the similarity values (Si) over the entire image:

Si =
1
N

∑
p∈I

si(p), i = 1, · · · , Nr. (6)

We perform a least squares t of an exponential decay func-
tion S = e−r/C to the coordinates (ri, Si) i = 1, · · · , Nr.
The correlation length is the value of r for which S = 1/e.
The orientation correlation has been used in the context of

p

r
2

r
3

Fig. 3. Sampling grid for estimation of s i. Shown here is the
case for which δr = 1.5 pixels, Nr = 5, Na = 8

image registration in [11]. Related work in the nanoscience
community that lead to the identi cation of exponential decay
as the model for the correlation length function is described
in [4].

5. RESULTS AND DISCUSSION

In gure 4 we show the correlation function that has been
estimated from the input images. We used the following pa-
rameters for our sampling grid: Na = 72, δr = 1.5 pixels,
Nr = 50. We sample the order image only up to a distance of
75 pixels from any given pixel because the correlation func-
tion is affected by sampling effects for larger distances. It
needs to be noted that our correlation plots are very similar to
what we would qualitatively expect.
The variation in the estimate of the correlation length with re-
spect to the two parameters σ1 and σ2 are shown in Table 1.
The estimated value of the correlation length was not signi -
cantly affected in the range of parameters shown in the table.

The pixel values translate to a change in physical length of
±2 nm.

σ1 = 2.0 σ1 = 2.5 σ1 = 3.0

σ2 = 2.0 8.0933 8.163 8.181
σ2 = 2.5 8.061 8.1708 8.179
σ2 = 3.0 8.0826 8.1838 8.2

Table 1. Estimated correlation lengths, in pixels, for various
image processing parameters for third image in row 1 of g-
ure 4

In summary we have developed an image metrology system
that can be used to estimate the orientation correlation func-
tion from images. The orientation estimation stage is criti-
cal to the success of the method. The estimation of the local
orientation especially through the incorporation of geometric
information is currently being pursued. Another avenue of re-
search that we are currently investigating is the segmentation
of the electron microscope images into regions based on the
correlation function.
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Fig. 4. Row 1: The example images for which correlation lengths are presented. Row 2: The corresponding correlation function
plots. For the rst image the correlation length is in nite as a constant structure extends throughout the image. For the second
and third images the correlation length can be read from the plots as (approximately) 15 pixels and 8 pixels respectively.
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