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ABSTRACT

Modern image processing techniques increasingly use prior models
of the expected distribution of objects. Principal component eigen-
models are often selected for shape prior modeling, but are limited
in capturing only the second order moment statistics. On the other
hand, kernel densities can in concept reproduce arbitrary statistics,
but are problematic for high dimensional data such as shapes. An
evident approach is to combine these methods, using PCA to reduce
the problem dimensionality, followed by kernel density modeling of
the PCA coefficients. In this paper we show that useful algorith-
mic and editing operations can be formulated in term of this simple
approach. The operations are illustrated in the context of point dis-
tribution shape models. Particular points can be rapidly evaluated as
being plausible or outliers, and a plausible shape can be completed
given limited operator input in a manually guided procedure. This
“PCA+KD” approach is conceptually simple, scalable (becoming in-
creasingly accurate with additional training data), provides improved
modeling power, and supports useful algorithmic queries.

Index Terms— Shape analysis, priors, segmentation.

1. INTRODUCTION

Prior models help an image processing system distinguish between
signal and noise, and serve to select among the solutions in under-
constrained and inverse problems. Priors are widely used, whether
explicitly formulated as in Bayesean approaches, or implicit in an
algorithm. Because of their importance and wide use, the subject of
priors merits independent study.

The major challenge in developing a shape or image prior model
is that the space is high dimensional. The set of “valid” shapes
is difficult to characterize, as it is a small and nonlinear subspace
of the overall space. Early priors considered only local (typically
smoothness) properties rather than modeling the complete shape,
thereby reducing the dimensionality of the problem. More recently,
global principal component analysis (PCA) methods have targeted
full shapes but model only a subset of the possible statistics, specif-
ically the second-order moments. Extending shape models beyond
these Gaussian statistics is a subject of recent and current research.

In this paper we consider the approach of employing kernel den-
sity (KD) to model the residual non-Gaussian distribution of PCA
coefficients. The modeling power is thus extended beyond second-
order statistics, while the “curse of dimensionality” that affects ker-
nel density modeling is partially addressed through the dimensional-
ity reduction afforded by PCA.

This PCA+KD approach to priors has the advantages of being
conceptually simple, scalable (becoming increasingly accurate as the
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Figure 1. Directional characteristics of this simple shape class (left)
result in clear non-Gaussian structure in the PCA coefficients (right).
Plots of coefficients 1 vs. 3 and 2 vs. 3 for a set of rotated versions
of this shape are shown.

available training data grows), and having potentially increased mod-
eling power.

We apply our technique to both synthetic and real shapes, the lat-
ter as a practical technique for streamlining the segmentation of elec-
tron tomography (EMT) data. Due to the inherent qualities of EMT
data (a large number of complex shapes coupled with low contrast
and high noise) extracting structures of interest from tomographic
volumes remains a predominantly manual process [1]. For example,
the construction of an accurate surface representation for modeling
the chick ciliary ganglion (CG) calyx synapse for the study by [2]
required the manual tracing of 690 tomographic slices and approx-
imately 6 months (one person) to complete [3]. Segmentation is
therefore a significant bottleneck that could potentially be reduced
via automated/semi-automated systems informed by machine learn-
ing. The shape prior approach described here provides one building
block for such systems.
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Figure 2. Twelve scanned hand poses, two shown, (A), are algorith-
mically varied to produce a larger training set (C). Examples of the
interpolated shapes are shown in (B).
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Figure 3. Tracings of 75 tomography slices (A); the resulting myelin
shape training set (B).

2. RELATED WORK

Shape modeling has an extensive literature [4, 5]. The earliest shape
priors were often simple local smoothness preferences such as used
in [6]. Global shape eigenmodels became popular in the 1990s [7]
and have been widely applied. More recently kernel PCA [8, 9], ker-
nel density modeling [10], and other techniques have been applied
in the context of shape prior models.

PCA has several recognized limitations. One is the fact that PCA
models only Gaussian statistics, because the data is “seen” through
its covariance matrix. The covariance matrix contains the second
order moments E[ f (a) f (b)] and does not reflect all characteristics
of the data. For example, f (a) f (b) = (− f (a))(− f (b)) = f (b) f (a),
so the covariance does not capture orientation properties of a signal
(Fig. 1).

Despite the limited information present in the covariance, PCA
can reconstruct an arbitrary signal to desired accuracy. The remain-
ing information about a particular signal appears in the distribution
of the PCA coefficients. With Gaussian data (for which the third
and higher-order moments are zero), the PCA coefficients them-
selves have Gaussian distribution, and plausible synthetic examples
of the data can be obtained simply by choosing random coefficients.
For non-Gaussian data, the PCA coefficients themselves have some
structure that is not characterized by the PC analysis (Fig. 1).

The power of linear techniques such as PCA can be extended by
applying a nonlinear mapping to the data before application of the
linear technique, thereby exposing new features of the data for anal-
ysis. The “kernel trick” further recognizes that it is not necessary
to explicitly calculate the eigenvectors of the feature space covari-
ance matrix (a smaller dual eigenproblem is substituted), leading
to practical algorithms such as Kernel PCA. Although these tech-
niques bring new capabilities, the kernel corresponding to the non-
linear mapping must be experimentally selected so as to emphasize
desired features of the data, and the representation within the feature
space is still second order. Alternately, PCA can be extended to less
“linear” data by grouping the data into subsets and then applying
PCA locally to each subset [11]. Such collections of local models
cannot represent coupled global nonlinear characteristics however.

It can be recognized that characterizing a space of shapes is
fundamentally a problem of modeling multidimensional probability
density. Kernel density approaches [12] can approximate arbitrary
probability distributions. On the other hand, it is generally consid-
ered that kernel densities do not work well in high dimensions, due
to a version of the “curse of dimensionality.” The data required to

Figure 4. An input shape (dashed black line) is corrupted with one
large and three smaller “errors.” The shape is projected into a PCA
subspace and then adjusted by gradient ascent in probability (grey
iterations) producing a plausible shape (red). Please enlarge to see
details.

sufficiently fill the space is exponentially proportional to the dimen-
sionality of the data, suggesting that kernel methods have limited
applicability in more than several dimensions. The problem is easily
explained by considering the proportion of data covered by an n-
dimensional kernel of fixed diameter as the dimension is varied. For
illustration purposes, suppose that the data is uniformly distributed
in an n-dimensional unit ball. In one dimension, a kernel of diameter
0.5 then contains about 50% of the data. In two dimensions, a disc of
diameter 1/2 contains 1/4 of the total area, and similarly the volume
of an n-dimensional subdisc is dominated by a factor proportional to
0.5n. Thus, either very large kernels are needed (leading to reduced
resolution), or exponentially more data is required to fill the volume.

An evident strategy is to apply kernel density modeling to the
PCA coefficients rather than to the original data. This PCA+KD
combination offsets the respective limitations of each technique con-
sidered separately: the kernel density can model non-Gaussian co-
efficient structures that are not captured by PCA (Fig. 1), and PCA
dimensionality reduction can model useful classes of shapes with 3-5
eigenvectors, thereby partially addressing the curse-of-dimensionality
issue in KD modeling. In the next section we demonstrate that prac-
tical algorithmic and editing operations can be formulated in terms
of PCA+KD shape priors.
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Figure 5. Ten contiguous points on the input contour (dashed black
line) are displaced, simulating a segmentation error. The PCA pro-
jection produces an implausible self-intersecting shape that is cor-
rected by PCA+KD (grey iterations resulting in red shape).
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Figure 6. The eight most “implausible” points on this corrupted
shape as automatically identified using Eq. 1

.

3. METHODS AND RESULTS

3.1. Data

Our hand shapes training data set was seeded by manually tracing
contours of scanned images of a hand in twelve different poses. We
then synthetically generated a much larger space of shapes from the
initial hand models using linear shape interpolation between pairs of
hand shapes, combined with a small amount of correlated random
warping to generate realistic variability (Fig. 2). Our myelin shape
training data set was obtained by manually tracing seventy-five con-
tours from a series of electron tomography images provided by the
National Center for Microscopy and Imaging Research (Fig. 3).

3.2. Identifying and Correcting Noise

In the following we denote the shape as represented in the principal
component basis as

s = Uc0 +m

where columns of U contain the eigenvectors of the covariance ma-
trix, c0 =UT s0 are the PCA coefficients of the original shape s0, s is
the resulting approximated shape, and m is the mean shape. The co-
efficient distribution is modeled with a 4-dimensional kernel density
with width tuned to be roughly 1/4 of the coefficient range.

Figs. 4,5 show the PCA+KD reconstruction of corrupted shapes.
In each case, a number of points on a shape (not in the training set)
have been displaced to simulate noise or other mistakes in an auto-
matic contour tracing algorithm (dashed line). The corrupted shape
is first projected into the PCA subspace, giving a coefficient vector c
and a corresponding reconstruction. The reconstructed shape is not
ideal (for example, the thumb in Fig. 4 is too long). Gradient ascent
in the KD probability is applied to the coefficient vector, resulting in
a series of shapes (grey outlines) that converge to an improved shape
(red). Note that this global shape evolution is not a realistic applica-
tion (the shape evolution should be guided by a data fidelity term as
well), but it serves to illustrate the capability of the shape prior.

More typical application scenarios require operation on individ-
ual points. This requirement arises while tracing or evolving con-
tours, for example; individual points may be iteratively moved so
as to minimize an energy that includes data fidelity and prior like-
lihood terms, and unlikely points may be judged to be outliers and
excluded.
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Figure 7. (A, Left) the user adjusts a single point, (middle) the PCA
projection has self intersection, (right) PCA+KD removes the self
intersection, though it also results in the fingers spreading. The user
then runs the process a second time, adding a point constraint to
reduce the movement on the little finger (B, left). (Note that slight
differences in the index finger area are due to both the differing user
input and a different random warping used to expand the training
set).

While the marginal probability of individual points can be found
by integration over the KD, this is relatively uninteresting because
the relation of a point to the configuration of other points is ignored.
A better approach to assessing the plausibility of individual points is
evident in Fig. 4: unlikely points are those that move the most. This
approach assumes that the entire contour is evolving and requires
global computation.

A more economical approximate measure of the plausibility of
individual points is suggested by the following statement: points that
are plausibly situated with respect to the prior will have low proba-
bility gradient. Conversely, implausibly situated points will often
have a significant probability gradient (although this is not guaran-
teed). The gradient with respect to change in particular point coor-
dinates can be calculated as

dP(c)
dsk

=
dP(c)

dc
dc
dsk

= ∇cP
dc
dsk

(1)

where sk is one (x- or y-) coordinate on the shape and ∇cP is the
probability gradient (with respect to PCA coefficients c) evaluated
at c. Since c = UT s, dc

dsk
is UT

:k = Uk:, the kth row of the eigenbasis.
The magnitude of the gradients at a point is then a fast approximate
measure of point plausibility (Fig. 6).
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3.3. Computer assisted editing

Tomographic segmentation remains a predominantly manual pro-
cess despite the extant variety of research on automated segmenta-
tion techniques [1]. Therefore, a user-guided but computer assisted
technique is a more realistic short-term goal than fully automated
segmentation. We implement an approach in which the user adjusts
the location of one or more points on an initial shape (such as the
segmentation result from the previous tomographic slice). The re-
maining points are automatically evolved toward a plausible shape
while interpolating the user-specified “oracle” points.

Coefficients c that interpolate the user-specified oracle points
will be used as a starting point for the PCA+KD procedure. There are
many possible vectors c; we choose the one that is closest in the L2
sense to the original c0. The intuition here is that the new shape will
probably have some general similarity to the initial shape, particu-
larly in the case of tomographic slices. This goal can be formulated:

min
1
2
(c−c0)

T (c−c0)+Λ
T (Ec− p)

where p is a vector containing the oracle points, E contains the rows
of U corresponding to the oracle points, and Λ is Lagrange multiplier
vector. Setting the derivative with respect to c,Λ to zero gives the
system [

I ET

E 0

][
c
Λ

]
=

[
c0
p

]

that provides the desired c.
Figure 7 (A, left) shows a shape with a single oracle point spec-

ified by the user (selecting only a single point places the highest
demand on the shape prior), and Fig. 7 (A, middle) shows the shape
generated using the new coefficients c. The PCA-generated shape at
(A, middle) is greatly improved with respect to (A, left), but shows
undesirable self-penetration.

The generated shape is improved by appealing to the kernel den-
sity. Starting from position c, we walk uphill in probability while
continuing to interpolate the oracle points. This can be done by pro-
jecting the probability gradient into the nullspace of the constraint
matrix E. From the singular value decomposition, E = USV T , form
the matrix V0 consisting of the last 2n columns of V for n oracle
points. The modified gradient is then

∇
subspace

P(c) = V0V0
T

∇P(c)

Figure 7 (A, right) shows the final computer-assisted shape af-
ter crawling uphill to a probability plateau. The self intersection is
eliminated and the shape proportions are improved. This example
using only one user-specified point shows that the shape prior is ef-
fective even in severely underconstrained situations. In panel (B) the
user decides to place a second point, constraining the movement of
the little finger. This assisted editing process can continue with any
desired number of input points, rapidly approximating any desired
plausible shape configuration.

4. CONCLUSION

We demonstrated a simple and scalable shape prior modeling method
using PCA combined with kernel density. By using PCA to perform
dimensionality reduction on high dimensional data, and then model-
ing selected PCA coefficients using a kernel density, we overcome
the second order limitations of PCA while deferring the curse of

dimensionality that affects kernel density modeling in high dimen-
sions.

Unfortunately the range of dimensionality that can be consid-
ered with this approach cannot be characterized in advance, as it
depends on the data. If the PCA coefficients have little local struc-
ture, they can be modeled with broad kernels that are required in
high dimensions. On the other hand, some complex and highly
structured shapes may require high dimensional modeling and a pro-
hibitive amount of training data. In these cases a local rather than
global shape model could be adopted. Nevertheless, we show that
PCA+KD is effective and improves on PCA on several examples of
realistic complexity.

Our results were generated by applying the PCA+KD approach
to point distribution shape models of synthetic and biological shapes.
Potential applications include shape priors enhanced image segmen-
tation and other applications that could benefit from accurate priors.
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