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ABSTRACT

This paper addresses the issues of nonlinear edge-preserving

image smoothing and segmentation. A ML-based approach is

proposed which uses an iterative algorithm to solve the prob-

lem. First, assumptions about segments are made by describ-

ing the joint probability distribution of pixel positions and

colours within segments. Based on these assumptions, an op-

timal smoothing algorithm is derived under the ML condition.

By studying the derived algorithm, we show that the solution

is related to a two-stage mean shift which is separated in space

and range. This novel ML-based approach takes a new ker-

nel function. Experiments have been conducted on a range

of images to smooth and segment them. Visual results and

evaluations with 2 objective criteria have shown that the pro-

posed method has led to improved results which suffer from

less over-segmentation than the standard mean-shift.

Index Terms— Maximum Likelihood, Mean-Shift Proce-

dure, Image Smoothing, Image Segmentation

1. INTRODUCTION

Image segmentation has been widely studied [3]. It gener-

ates a set of partitions in an image which consist of homoge-

neous regions. Different segmentation approaches fall into

categories such as pixel, region, content, edge, object and

semantic-based methods. Stochastic modelling techniques are

commonly used in the segmentation of textures and complex

images [1, 2]. Although they are very robust, these techniques

often suffer from being computationally intensive. Other tech-

niques such as the mean shift, bilateral filter and nonlinear dif-

fusion are frequently employed due to their ability to smooth

an image while preserving edges [5, 4, 3]. These techniques,

which can all be related through a common framework [9],

are robust yet less computational intensive than most stochas-

tic methods. However, they are sensitive to kernel bandwidth

selection.

In this paper, we propose a novel nonlinear smoothing

and segmentation algorithm, which is algorithmically simi-

lar to the mean-shift. The most significant difference between

the two lies in their derivation. The proposed method is de-

rived from an analysis of the joint-probability that two pixels

are contained in the same segment. The derivation leads to

a maximum likelihood solution for the mean colour in each

segment. This derivation makes the connection between the

statistical assumptions and parameters selection much clearer

than for the standard mean-shift.

Algorithmically, the proposed algorithm consists of two

consecutive weighted mean-shift algorithms. Compared to

the standard mean-shift, both algorithms preserve edges. How-

ever the proposed algorithm smooths the inside of segments

while the mean-shift algorithm often over-segments them. This

smoothing is beneficial because it makes the merging of seg-

ments easier to perform.

The paper is organized as follows. In Section 2, a maxi-

mum likelihood (ML) approach is formulated which derives

an estimate of the mean-segment colour for each pixel based

on the probability that any two pixels belong to the same seg-

ment. In Section 3, the probability that two pixels belong

to the same segment is derived. Next, in Section 4, after a

short review of the mean shift filter, the similarity and differ-

ence between the ML-based approach and the mean shift are

discussed. Section 5 includes some experimental results and

comparisons. Finally, conclusions are given in Section 6.

2. MAXIMUM LIKELIHOOD ANALYSIS FOR
IMAGE SEGMENTATION

In this section, the image segmentation problem is formulated

in terms of a maximum likelihood problem. For every pixel,

we derive the probability that its encapsulating segment has a

given mean colour. We derive this probability subject to the

spatial and colour characteristics of all other pixels. Based

on this, it is possible to find the colour that maximises the

likelihood of the mean segment colour.

In the following text, the spatial position of pixel i shall

be denoted by si and its colour by ci. The segment contain-

ing the ith pixel shall be denoted Xi. Further, any two given

segments, Xi and Xj , are either identical or disjoint. We as-

sume that a pixel j is contained in segment Xi with probability

P (j ∈ Xi|sj). This shall be denoted P (sj) and is given by

P (sj) ∝ exp
{
−‖sj − s̄i‖2

/σ2
s

}
,
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where s̄i is the centre of segment Xi and is assumed known.

We further assume that the colours of all pixels within a seg-

ment are i.i.d. Gaussian distributed around the mean colour

of the segment, and the colours of pixels in different segments

are white and uniformly distributed in the colour space. This

is equivalent to having no prior information about the colour

values of pixels. That is, there are two cases:

j ∈ Xi and cj = c̄i + wj , wj ∼ N (0, σ2
cI)

j /∈ Xi and cj = dj , dj ∼ 1
2553

Based on the above two cases, the joint probability of colour

and position of each pixel can be described as follows:

P (cj |sj , c̄i) ∝ P (sj)

(2πσ2
c)3/2 e−‖cj−c̄i‖2/σ2

c + 1
2553 (1 − P (sj))

Hence, the joint probability for all pixels j ∈ Xi (with mean

segment colour c̄i) is given by

P (c1 · · · cN |s1, · · · sN , c̄i) ∝
∏

j P (cj |sj , c̄i) (2.1)

The best estimate ĉi of c̄i, is the maximum likelihood solution

to the log-likelihood of (2.1), which is given by the equation

ĉi = arg max
c̄i

lnP (c1 · · · cN |s1, · · · sN , c̄i).

Applying the logarithm to (2.1), taking the derivative with

respect to c̄i, and setting it to zero, yields the following

∂
∂c̄i

(lnP (c1 . . . cN |s1 . . . sN , c̄i))

=
∑

j
2553(cj−c̄i)P (sj)e

−‖cj−c̄i‖/σ2
c

2553P (sj)e
−‖cj−c̄i‖2/σ2

c +(2πσ2)3/2(1−P (si))
= 0

which is equivalent to

ĉi =

∑
j cjK(cj − ĉi, P (si))∑
j K(cj − ĉi, P (si))

, (2.2)

where K(u, v) =
∑

j

2553 exp(−‖u‖2σ−2)
2553 exp(‖u‖2σ−2)+(2π)3/2σ3( 1

v −1)
. It is

worth noting that (2.2) has a remarkable resemblance to the

mean-shift expression. This shall be developed further in sec-

tion 4.

3. MAXIMUM LOG-LIKELIHOOD ESTIMATE FOR
THE SPATIAL CENTRE

In Section 2, it is assumed that the centre s̄i of segment Xi is

known in advance so that (2.2) can be computed. To estimate

s̄i, colour information will be used to find the most likely can-

didate. This will rectify the assumption made in section 2, that

colour differences between pixels do not affect P (sj). Math-

ematically, the derivation in this section mirrors the previous

section. First, we assume that the probability that a pixel j is

in the segment Xi subject to its colour, is given by

P (j ∈ Xi|cj) = exp
{
−‖cj − c̄i‖2

/σ2
c

}
,

where c̄i is the mean colour of segment Xi and is assumed

known. We denote P (j ∈ Xi|cj) by P (cj) for simplification.

The probability that s̄ is the centre of Xi is given by

P (s̄) =
∑
S

δ

(
s̄ =

∑
j∈S sj∑
j∈S 1

)
P (S = Xi),

where
∑

S is the sum over all possible connected sets. To

obtain the solution to the above equation, an approximation is

made by limiting the possible S to spherical shapes. In such

a case, the above equation can be reasonably simplified since

any sphere centered at si is guaranteed to satisfy the delta

function. Let a sphere centered at si with radius r be denoted

B(si, r), then it follows

P (s̄) ≈
∫

r

P (B(si, r)). (3.1)

Assuming all pixels can be treated separately and that proba-

bility decreases as the size of the segment increases, then

P (B(s̄, r)) = P (r)
∏

j∈B(ŝ,r)

P (cj)
∏

j �∈B(ŝ,r)

(1 − P (cj))

Set P (r) = exp{−r/σ2
s}, (3.1) becomes

P (s̄) =
∫ ∞

0

e−r/σ2
s

∏
j∈B(s̄,r)

P (cj)
∏

j �∈B(s̄,r)

(1 − P (cj))dr.

Taking the logarithm, we get

lnP (s̄) =
∑

j

∫
r<‖sj−ŝi‖2

P (cj)e−r/σ2
s dr

+
∫

r>‖sj−s̄i‖2
(1 − P (cj))e−r/σ2

s dr

= α + β
∑

i

P (cj)e−‖s̄i−sj‖2/σ2
s

where α and β are constants. Taking the derivative and set-

ting this equal to zero, yields that the ML estimate ŝi satisfies∑
j(ŝi − sj)βP (cj)e−‖ŝi−sj‖2/σ2

s = 0, which implies

ŝi =

∑
j sjKs(ŝi − sj , P (cj))∑
j Ks(ŝi − sj , P (cj))

(3.2)

where Ks(u, v) = ve−‖u‖2/σ2
s .

4. ML-BASED SEGMENTATION: SIMILARITY AND
DIFFERENCE TO A STANDARD MEAN SHIFT

In this section, we show that the proposed ML-based image

smoothing is similar in spirit to the mean shift. Mean-shift

seeks local maxima (modes) from the kernel-based density
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estimate. Given a set of data {xi, i = 1, ..., N}, the kernel

density estimate of x is given by

pK(x) = 1
NH

∑
i K(H−1d(x,xi,H)) (4.1)

The kernel K(·) is defined here as a radially-symmetric posi-

tive integrable function. Two commonly used kernels are the

Gaussian kernel and the Epanechnikov kernel. The shape of

the kernel combined with the bandwidth matrix H determines

how much, data close to x, affect the density estimate. The

mean-shift [4] is designed to find the local maxima in the

kernel-based estimate of the pdf. Given a kernel K, there

exist a shadow kernel G such that the iterated process

xn+1 =
∑N

i=1 xiG(‖xn−xi

h ‖2)∑N
i=1 G(‖xn−xi

h ‖)2
(4.2)

is guaranteed to converge to a local maximum of the density

estimate. The mean-shift is defined as m(xn) = xn+1 − xn

and tends to 0, when xn reaches the local maximum. In image

segmentation, the data set is chosen as a 5D feature set which

is defined as the vector xi = [si, ci]T that includes both the

position and the value of image pixels. The mean-shift is run

on all pixels. Once a local maximum is found, the original

pixel colour is replaced by the converged colour value.

The proposed algorithm is similar to the mean-shift algo-

rithm. First, an estimate of the centre s̄i of each segment Xi

is derived assuming that the the mean segment colour c̄i is

known and the probability that j is contained in Xi is only

dependent on its proximity in colour (see Section 4). The

centre is found with the use of a mean-shift algorithm (Equa-

tion (3.2)). The kernel is a weighted Gaussian kernel. Next, a

better estimate of the segment colour c̄i is obtained by max-

imising the likelihood function for the colour (see Section 3).

This is achieved with a mean-shift algorithm (Equation (2.2)),

which is a new type of kernel. The algorithm is run for all

pixels and then repeated until the colours converge. Usually

5-6 iterations are sufficient. The algorithm is summarized in

Table 1.

Although the two methods are similar, the ML-based ap-

proach has less over-segmentation. This is because the two-

stage mean-shift algorithm used by the proposed method are

both weighted. Equation (3.2) is weighted by the initial esti-

mate of the mean-segment colour and therefore points which

are close, but differ in colour, will not converge to exactly the

same spatial position. The same holds for the second part of

the algorithm. This is in contrast to the standard mean-shift

where close points are guaranteed to converge to the same

point and therefore over-segmentation can occur.

5. EXPERIMENTAL RESULTS

Experiments have been conducted for a variety of 2D colour

images. First, both the proposed method and the mean-shift

algorithm are independently used to filter the images. Then,

Table 1. ML-based algorithm using a two-stage mean shift
while segment borders are unclear (5-6 iterations)

for all pixels i in image.

Init: ŝ0i ← si, ĉ0i ← ci,

while d(ŝn+1
i , ŝn

i ) > ε do:

ŝn+1
i ←

∑
j sjKs(sj−ŝn

i ,P (c0
j ))∑

j Ks(sj−ŝn
i ,P (c0

j ))

endwhile
ŝ∞i := ŝn

i

while d(ĉn+1
i , ĉn

i ) > ε do:

ĉn+1
i ←

∑
j cjKc(cj−ĉn

i ,P (ŝ∞i ))∑
j Kc(cj−ĉn

i ,P (ŝ∞i ))
,

endwhile
ci = ĉn

i
endfor

endwhile

for both sets of filtered images, the same post-processing pro-

cedure as in [4] is applied to divide the images into segments.

This post-processing consists of merging all pixels with colour

difference below a given threshold T into regions and then

merging all regions smaller than size M into larger regions.

The threshold T used for merging segments are listed in Table

2. The spatial and range bandwidths used for both algorithms

are hc = 32, hs = 2, respectively.

Performance evaluation: The results from the proposed fil-

tering and equivalent results for the mean-shift algorithm are

shown in Figure 1. From the figures one can see that the pro-

posed method generates smoother segments than the mean-

shift, but generates equally sharp boundaries at segment edges.

To obtain an objective measure of the performance, both the

uniformity measure U [7], and the evaluation function E [8]

, which are defined by

U = 1 − ∑N
i=1 Pi σ2

i /σ2
max, E =

√
N

∑N
i=1

(
e2
i /
√

Ni

)
respectively, were applied to the filtered images in the seg-

mented regions. Here, Pi is the weighting factor for the seg-

ment i and equals 1/N , where N is the number of segments.

Further σ2
i is the variance of the original image in the region i,

and σ2
max = (Rmax−Rmin)

2

2 + (Gmax−Gmin)
2

2 + (Bmax−Bmin)
2

2 . ei is the

error between the original and filtered image in the segment i,
and Ni is the number of pixels in the segment i. The unifor-

mity measure is indicative of the homogeneity of the regions.

The best performance is reached when U = 1.0. The evalua-

tion function measures the distortion caused by segmentation,

and a smaller E indicates better performance.

The results from these measures are shown in Tables 2 and

3. To compare the performance, the measures were calculated

for two sets of tests and were applied to different images. Ta-

bles 2 shows the results from a test where the uniformity val-

ues were conditioned to be equal for both the mean-shift and

the proposed method. From the results, the proposed method

shows clear better performance with much smaller E values.

In Tables 3, the results were obtained subject to the condition

that the number of final segments would be equal for both
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Fig. 1. Filtered and segmented images generated by both the proposed method and the standard mean shift for images: Lady and Pepper. From left to right:

original, filtered image using the proposed method, filtered image using the mean-shift filter, segmented image using the proposed method and segmented using

the standard mean shift.

methods. From the table, it is interesting to observe that the

E values are clearly improved, however, U values are about

equal or slightly decreased.

Pepper Monkey Swim Lady

merging threshold t 40 40 40

E(filtered) standard 508 1102 399

proposed 464 683 238

U(tuned value) standard 0.982 0.973 0.995

proposed 0.983 0.973 0.995

Table 2. Results from performance evaluation: E and U values in (5) from

the proposed method and the mean shift. In the evaluation, the uniformity for

the two methods were tuned to about the same values (indicated in the bottom

2 lines).

Pepper Monkey Swim Lady

merging threshold t 5 10 20

No. segments (fixed) 50 50 50

E(filtered) standard 70 103 32

proposed 63 94 33

E(segmented) standard 183 178 47

proposed 178 161 38

U(segmented) standard 0.72 0.57 0.93

proposed 0.73 0.57 0.92

Table 3. Results from performance evaluation: E and U values in (5)

from the proposed method and the mean shift. In the evaluation, the number

of segments were kept constant for both methods.

6. CONCLUSION

In this paper, an image smoothing algorithm for segmenta-

tion has been formulated and derived subject to an ML cri-

terion. The result is related to a two-stage mean-shift algo-

rithm which takes a new type of kernel. The method has

been tested on a range of images. A visual inspection on

the test results and a comparisons with the standard spatial-

range mean-shift have shown a marked improvement in terms

of the over-segmentation and smoothness within segments.

Objective evaluations using 2 criteria functions with two dif-

ferent settings have shown that the proposed method has a

clear improvement under one criterion function, while the

performance subject to the other criterion remains almost un-

changed.
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