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ABSTRACT

Support vector machine (SVM) is a hot topic in many areas, such as
machine learning, computer vision, data mining, and so on, due to its
powerful ability to perform classification. Though there exist a lot of
approaches to improve the accuracy and the efficiency of the models
of SVM, few of them address how to eliminate the redundant data
from the input training vectors. As it is known, most of support vec-
tors distributes in the boundary of the class, which means the vectors
in the center of the class are useless. In the paper, we propose a new
approach based on Gaussian model to preserve the training vectors
in the boundary of the class and eliminate the training vectors in the
center of the class. The experiments show that our approach can
reduce most of the input training vectors and preserve the support
vectors at the same time, which leads to a significant reduction in
the computational cost and maintains the accuracy.

Index Terms— Support vector machine, Image segmen-
tation

1. INTRODUCTION

Recently, the researchers gain more and more attention to support
vector machine (SVM) due to its useful applications in many areas
[1]-[9], such as machine learning, neural network, data mining, mul-
timedia, and so on. Given a two-class linearly separable task, basic
SVM approach [1] finds a hyperplane which maximizes the geomet-
ric margin and minimizes the classification error. Though there exist
a lot of SVM approaches, they can be divided into two categories
based on the algebraic view [1]-[5] and the geometric view [6]-[9]:
(i) the approaches from the algebraic view includes sequential mini-
mal optimization (SMO) [3], SVM with soft margin [2], ν-SVM [5],
kernel SVM, support vector regression machine, and so on. These
approaches explore how to minimize the classification error and re-
duce the computational cost of SVM by the algebraic algorithms.
(ii) the approaches from the geometric view includes SVM with dual
representation [6], the iterative nearest point algorithm, SVM based
on convex hull [8], SVM based on reduced convex hull (RCH) [7],
and so on. These approaches make use of the geometric properties
of SVM to solve the classification task.

Though the approaches of SVM in both categories consider all
kinds of problems about SVM, most of them still ignore one prob-
lem: how to eliminate the redundant training vectors to make SVM
more efficient and maintain the accuracy at the same time. As it is
known, the most useful training vectors are support vectors, which
form the support vector classifier and determine the hyperplane with

the maximum margin, while the contribution of the other training
vectors is limited. As a result, we design a new approach called
fast support vector machine approach (SVM) based on the Gaussian
model and the projection process to remove the redundant training
vectors and preserve the support vectors.

The remainder of the paper is organized as follows. Section 2
introduces fast support vector machine approach (FSVM) and its
performance analysis. Section 3 presents how to estimate k value
which is an important factor in FSVM. Section 4 describes how to
extend FSVM to solve multi-class problem. Section 5 applies our
proposed approach on real-time image segmentation. Section 6 is
the conclusion and future work.

2. FAST SUPPORT VECTORMACHINE APPROACH

Given a set of training vectors Vtrain = {v1, v2, ..., vn} with the
labels Ytrain = {y1, y2, ..., yn} (yi ∈ {1, 2}), the objecitive of
fast support vector machine approach (FSVM) is to (i) eliminate the
redundant training vectors and (ii) train the classifier by the remain-
ing training vectors. The difference between FSVM and the existing
SVM approaches is that FSVM focuses on reducing the redundant
training vectors. There are two assumptions which relate to FSVM:
(i) there exist a convex hull for the input training vectors in each
class; (ii) the problem is separable. Figure 2 (a) illustrates an exam-
ple which satisfies the assumptions and the classifier obtained by the
traditional SVM is shown in Figure 2 (b).

Figure 1 shows the overview of FSVM. FSVM first eliminate
the training vectors which are close to the center of the class by the
Gaussian models. Then, it removes the training vectors by a pro-
jection process. Finally, FSVM performs SMO on the remaining
training vectors to obtain the classifier.

Algorithm FSVM (a set of training vectors Vtrain)
1. Eliminate the training vectors by the Gaussian models;
2. Eliminate the training vectors by the projection process;
3. Perform SMO to obtain the binary SVM classifier;

Fig. 1. The overview of FSVM

2.1. Eliminating by the Gaussian model

FSVM first estimate the multivariate Gaussian distribution of the in-
put training vectors in each class:

G = (μ, Σ) (1)

IV - 3411-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007



(a) The original training vectors (b) The classifier obtained by
FSVM(O)

(c) The candidates generated by
the Gaussian model

(d) The classifier obtained by
FSVM(G)

(e) The candidates generated by
the projection process

(f) The classifier obtained by
FSVM(P)

Fig. 2. The example of fast support vector machine approach

μ =

�n
i=1 vi

n
, σ2 =

�n
i=1(vi − μ)2

n
(2)

where μ is the mean of the Gaussian model G, Σ is the d×d diagonal
covariance matrix with σ2 on its diagonal, and d is the number of
dimensions. The value of the input training vector v with respect
to the multivariate Gaussian probability distribution function can be
calculated by

P (v) =
1

(2π)
d
2
�|Σ|

e(− 1
2 (x−μ)T Σ−1(x−μ)) (3)

One interesting observation for these probability values with re-
spect to G is that the vectors which are close to the center of the
Gaussian distribution have the large probability values, while the
vectors which are close to the boundary have the small probability
values. FSVM selects k training vectors in each class with the small-
est probability values in the second step. Figure 2 (c) demonstrates
an example of selecting k = 18 training vectors (red circles) from
each class. Most of the selected vectors locate in the boundary of
the class. The input vectors which are not selected will be removed
from the training set as shown in Figure 2 (d).

2.2. Eliminating by the projection process

Another interesting observation for support vectors is that the sup-
port vectors of one class always locate in the place which are close

to the other class as illustrated in Figure 2 (b) and Figure 2 (d). So,
in the third step, FSVM further eliminates the redundant training
vectors by a projection process as shown in Figure 2 (e) (f).

We formulate the process of the projection in the following. The
training vectors can be divided into two classes Itrain and Jtrain:

Vtrain = Itrain ∪ Jtrain

Itrain = {v1, v2, ..., vI}
Jtrain = {v1, v2, ..., vJ} (4)

FSVM first considers the class Itrain. It translates the origin of the
coordinate system to the center μI of the class Itrain:

v′i = vi − μI , i ∈ [1, I ] (5)

Then, the vector μJμI is obtained by the following equation:

μ′J = μJ − μI (6)

In the third step, FSVM project the vector μ′J to all the vectors v′i
(i ∈ [1, I ]) respectively as follows:

|μ′J |cosθi =
v′i · μ′J
|v′i|

(7)

where θi is the angle between the input vector v′i and the vector
μ′J . The following equation is obtained by substitute (vi − μI) and
(μJ − μI) for v′i and μ′J respectively:

|(μJ − μI)|cosθi =
(vi − μI) · (μJ − μI)

|vi − μI | (8)

δ(|(μJ − μI)|cosθi) =

�
1 if |(μJ − μI)|cosθi ≥ 0
0 Otherwise

(9)

If δ(|(vi − μI)|cosθi) = 1, the training vector will be preserved.
Figure 3 (a) illustrate an example of the projection. The training
vector v2 in Figure 3 (a) will be preserved, since cosθ2 > 0.
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Fig. 3. The projection process

FSVM also preserves two training vectors vi∗1 and vi∗2 which
satisfy one of the following conditions:

i∗1 = arg mini∈[1,I]&&cos θi≥0 cos θi

i∗2 = arg mini∈[1,I]&&cos θi<0 − cos θi (10)

The training vector v3 in Figure 3 (b) will be preserved since v3

satisfies the first condition, while The training vector v4 in Figure 3
(b) is preserved due to satisfy the second condition.
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In the fourth step, FSVM eliminates all the training vectors which
satisfy δ(|(vi − μI)|cosθi) = 0 and do not satisfy one of the about
conditions. The training vector v1 in Figure 3 (b) is removed from
the training set.

By the same approach, part of the training vectors in Jtrain

can be eliminated from the training set. Note that, the projection
process can be used to remove the redundant training vectors for
non-separable problem.

2.3. Training the classifier

Finally, FSVM performs sequential minimal optimization (SMO)
to compute the discriminant function (f(v) = ωT v + b for linear
case and f(v) = 〈α · K(v, s)〉 + b for kernel case [10]) of binary
SVM classifier on the remaining training vectors Vremain in the
fourth step (where K(v, s) = [k(v, s1), k(v, s2), ..., k(v, sm)]T ,
s ∈ S = {s1, s2, ..., sm} is the support vector which is a subset of
the input training vectors, m is the number of support vectors, and
k(v, sj)(j ∈ [1, m]) is the evaluation of kernel function centered at
sj).

Figure 2 illustrates an example of the FSVM algorithm on the
synthetic dataset. Figure 2 (a) shows the original input training vec-
tors, Figure 2 (c) illustrates the training vectors after pruning by the
Gaussian model, and Figure 2 (e) demonstrates the training vectors
after pruning by the projection process. The corresponding binary
classifiers obtained by FSVM are shown in Figure 2 (b) (d) (f) re-
spectively. Though the classifiers are obtained from different train-
ing sets with different number of the training vectors, the classifiers
in Figure 2 (b) (d) (f) are same due to the same support vectors and
the same margin as shown in Figure 4 (d). The pruning processes by
the Gaussian model and the projection remove most of the training
vectors as illustrated in Figure 4 (c), which lead to significantly re-
ducing in the computational cost as demonstrated in Figure 4 (a) and
the number of kernel evaluations as shown in Figure 4 (b) (where
FSV M(O), FSV M(G) and FSV M(P ) correspond to the above
three classifiers).
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Fig. 4. The performance of the approaches

3. K VALUE ESTIMATION

The parameter k is the most important factor for FSVM. In order to
estimate k value, FSVM has to evaluate the number of the training
vectors on the boundary of the class. The algorithm first calculates
the average probability value P for the training vectors in the first
class Itrain according to the following equation :

P =

�|Itrain|
i=1 P (vi)

|Itrain| (11)

where Itrain is the cardinality of the first class.
Then, it computes the minimum average probability value Pmin

and the maximum average probability value Pmax:

Pmin =

�|Imin|
j=1 P (vj)

|Imin| , P max =

�|Imax|
h=1 P (vh)

|Imax| (12)

vj ∈ Imin = {vi|P (vi) < P, vi ∈ Itrain}
vh ∈ Imax = {vi|P (vi) ≥ P , vi ∈ Itrain} (13)

We further defines the distribution ratio (R) as follows:

R =
Pmin

Pmax

(14)

If most of training vectors locates on the boundary of the class, Pmin

is close to P max and R is close to 1. If R is small, most of the
training vectors are close to the center of the class.

In the third step, the estimation algorithm evaluates k value based
on the distribution ratio (R). If R ≥ τ (τ is a threshold and be set to
0.4 in the paper), k is equal to the number of the training vectors in
the first class. Otherwise, k is estimated by the following equation:

k = � P − P min

P max − Pmin

· |Itrain|� (15)

Where |Itrain| denotes the cardinality of the first class Itrain. By
the same approach, we can estimate k value for the second class.

4. EXPERIMENTS

In the experiment, we compare three approaches: FSVM(O) which
performs SMO on the original training dataset, FSVM(G) which per-
forms SMO on the training dataset after pruning by the Gaussian
model and FSVM(P) which performs SMO on the training dataset
after pruning by the projection process. The default setting of the
threshold τ for k value estimation is 0.4.

The real training dataset consists of a set of training vectors with
R, G, B value. The pixels in the red rectangle in Figure 5 (a) are
the training vectors, which work as the prior knowledge for image
segmentation. The remaining pixels are viewed as the test dataset.
Our objective is performing image segmentation based on the SVM
classifier training by the prior knowledge.

Figure 6 shows the performance of three approaches on im-
age 1 and image 2 respectively. FSVM(P) outperforms its compe-
titions as shown in Figure 6 (a), due to its powerful ability to re-
duce the number of the input training vectors as shown in Figure 6
(b). The corresponding number of kernel evaluations decreases too,
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Fig. 5. The training pixels and the total running time

which is illustrated in Figure 6 (c). Fortunately, the classifier ob-
tained by FSVM(P) has the same margin of the classifiers obtained
by FSVM(O) and FSVM(G). They have the same support vectors
(the number of support vectors is 9 and 6 for image 1 and image 2
respectively), too.
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Fig. 6. The performance of three approaches

Figure 7 illustrates the segmentation results by three classifiers
which are obtained by FSVM(O), FSVM(G) and FSVM(P) on im-
age 1 and image 2 respectively. The segmentation results on the
test dataset shown in Figure 7 are indistinguishable, while FSVM(P)
takes the lower computational cost by comparing with other two ap-
proaches, as shown in Figure 5 (b).

FSVM(O)

FSVM(G)

FSVM(P)

Fig. 7. Segmentation results by three approaches

5. CONCLUSION AND FUTUREWORK

This paper investigates the problem of eliminating the redundant
data from the input training vectors. Though there exist a large num-
ber of algorithms to improve SVM, few of them consider how to
reduce the number of the training vectors and maintain the accuracy
at the same time. Our major contribution is a new approach based
on the Gaussian model and the projection process to eliminate the
redundant training vectors. We further propose an algorithm to es-
timate the number of training vectors (k value) on the boundary of
the classes . Finally, the experiments on the synthetic dataset and the
real dataset demonstrates that the new approach can reduce the com-
putational cost greatly and maintains the accuracy of the classifier
at the same time. In the future, we will explore how to extend our
approach to solve nonseparable problems by FSVM.
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