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ABSTRACT

We present a novel approach to background cutout for image

editing. We show how background cutout can be achieved

without any user labeling. This is in contrast to current meth-

ods, where the user needs to label each image separately. Our

method uses automatic object discovery methods to provide

location and scale estimates of the object of interest; these es-

timates then provide seeds for initializing color distributions

of a segmentation algorithm. We show that our approach can

achieve similar performance as traditional methods that re-

quire users to specify for each image a bounding box of the

target object.

Index Terms— Image segmentation, Unsupervised learn-

ing

1. INTRODUCTION

Image segmentation can be categorized into interactive and

non-interactive. Interactive systems such as ‘Magic Wand’ [1]

and ‘Intelligent Scissors’ [2] have practical importance in im-

age editing. These systems start with a user specified re-

gion or rough contour and use texture or edge information

to achieve segmentation. Recently, there has been improve-

ments on further reducing the amount of required user interac-

tion to achieve comparable segmentation performance. In the

GrabCut method [3], only a rough bounding box is needed,

which is a significant improvement over previous methods.

Suppose the user wants to segment the same type of object

from a set of images, instead of a single image. In previous

interactive systems, the user must specify the object within

each image, which can be time consuming. If the target ob-

jects share certain characteristics, these characteristics can be

shared across images. Hence it is possible to further reduce

the required amount of human interaction.

In this work, we would like to investigate how well we

can segment a set of images with zero mouse clicks. On a high

level, this is achieved by the interaction between a method that

provides rough bounding boxes of the target objects in each

image, and a method that uses the bounding boxes as seeds to

achieve foreground-background segmentation. The method

that provides bounding boxes will be called ‘automatic ob-

ject discovery’, and the method that achieves segmentation is

based on the ‘GrabCut’ method [3].

We will review image segmentation by GrabCut in Sec-

tion 2. We will then detail the automatic object discovery

method in Section 3, and its interaction with GrabCut in Sec-

tion 4. This is followed by experiments in Section 5, and a

summary in Section 6.

2. IMAGE SEGMENTATION BY GRABCUT

The GrabCut method [3] is based on interactive graph cuts

[4], which provides an energy minimization framework for

segmenting a single image into foreground (object) and back-

ground. Hard constraints are obtained by the user who spec-

ifies certain pixels as foreground or background. Soft con-

straints incorporate both boundary and region information.

Minimization is done using a standard minimum cut algo-

rithm. The obtained solution gives the best balance of bound-

ary and region properties among all segmentations satisfying

the constraints.

More specifically, two Gaussian mixture models (GMM)

are used to model the RGB color of each pixel zn, one for

the foreground and one for the background. A vector k =
{k1, ..., kN} assigns to each of the N pixels a unique GMM

component, one component either from the background or

from the foreground model, according to αn = 0 or 1. The

energy function E = U + V consists of a node potential

U(α,k,θ, z) =
∑

n

D(αn, kn, θ, zn) where

D(αn, kn, θ, zn) = − log π(αn, kn) +
1
2

log detΣ(αn, kn)

+
1
2
(zn − μ(αn, kn))T Σ(αn, kn)(zn − μ(αn, kn))

so that the parameters are

θ = {π(α, k), μ(α, k), Σ(α, k), α = 0, 1, k = 1...K}
and a smoothness potential

V (α, z) = γ
∑

(m,n)∈N

[αm �= αn] exp−β ‖zm − zn‖2
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where [.] is the indicator function, N is the set of neighbor-

ing pixels, and γ and β control the strength of the smooth-

ness term. Once the energy function is defined, the segmen-
tation mask (i.e., the foreground-background identity αn of

each pixel) is found through the following steps:

1. User selects a bounding box by mouse clicking. Pix-

els outside of bounding box are marked as background

(αn = 0). Pixels inside the box are marked as αn un-

known.

2. Computer creates an initial image segmentation, where

all unknown pixels are tentatively placed in the fore-

ground class and all known background pixels are placed

in the background class.

3. Gaussian Mixture Models (GMMs) are created for ini-

tial foreground and background classes.

4. Each pixel in the foreground class is assigned to the

most likely Gaussian component in the foreground GMM.

Similarly, each pixel in the background is assigned to

the most likely background Gaussian component.

5. The GMMs are thrown away and new GMMs are learned

from the pixel sets created in the previous set.

6. The energy function is minimized to find a new tenta-

tive foreground and background classification of pixels

(i.e., minimize the energy function E over αn).

7. Repeat from Step 4 until convergence.

Convergence properties are discussed in more detail in

[4][3].

Notice that, without Step 1, the system does not know the

color characteristics of the background regions, and hence it

cannot determine which regions are foreground and which are

background.

3. AUTOMATIC OBJECT DISCOVERY

As mentioned in the introduction, if multiple images are to

be segmented, and if these images contain the same type of

object (call them the target objects) that the user wants to seg-

ment, then it is possible to analyze the region characteristics

that consistently occur across images. It is the consistency

that tells the foreground from the background apart. In this

section, we will introduce such a method.

Topic models such as Probabilistic Latent Semantic Anal-

ysis (PLSA)[5], were originally used in the text understanding

community for unsupervised topic discovery. In computer vi-

sion, topic models have been used to discover object classes,

or topics, from a collection of unlabeled images. As a re-

sult, images can be categorized according to the topics they

contain. In the context of unsupervised object detection, the

object of interest and the background clutter are the two top-
ics.

Visual words (or textons) [6] are vector quantized local

appearance descriptors from patches. Objects can be rep-

resented as collections of visual words. We will discuss in

more detail in Section 5 on how the visual words are gener-

ated. Following the notations used in the text understanding

community, w ∈ W = {w1, ..., w|W |} is the visual word

associated with a patch, z ∈ Z = {zFG, zBG} is a hidden

variable that represents the topic (foreground or background)

associated with a patch, and d ∈ D = {d1, ..., d|D|} is the

index of the image associated with a patch.

PLSA assumes the joint distribution of d, w,and z can be

written as P (d,w, z) = P (d)P (z|d)P (w|z). PLSA is known

for its capability of handling polysemy: if a visual word w is

observed in two images di and dj , then the topic associated

with that word can differ in di and dj : arg max P (z|di, w)
can be different from arg max P (z|dj , w). In other words,

PLSA allows a visual word to have different meanings in dif-

ferent images.

We augment the PLSA model in the following way. We

introduce an extra variable r in the graph. This variable is

directly associated with the α values in GrabCut (Section 2).

The idea is to use the segmentation mask produced by Grab-

Cut to guide the automatic object discovery method. This

sounds like the opposite direction of what we are seeking for:

we wanted to use automatic object discovery to provide seeds

for initializing the color distributions in GrabCut. But as we

will see later, automatic object discovery and GrabCut are in-

timately connected, each feeding information to the other.

Figure 1 shows our proposed graphical model. The outer

plate indicates the graph is replicated for each image, and

the inner plate indicates the replication of the graph for each

patch. The topic variable z is hidden. The r value for each

patch is obtained by looking up the segmentation mask: if

this visual word corresponds to a patch that is segmented by

GrabCut as foreground, then r = 1; otherwise, r = 0.

d z
r

w

Fig. 1. The proposed graphical model for automatic object

discovery.

The segmentation mask is correlated with the hidden topic

z (foreground or background). This correlation is expressed

in the graphical model as the link from z to r, or P (r|z). We

consider the r value of each patch as an additional feature r
that is related to the hidden topic variable z. We learn the

parameters using the EM algorithm:
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E − step :
P (z|d, r, w) = k1P (z|d)P (w|z)P (r|z) (1)

M − step :

P (w|z) = k2

∑

d,r

m(d,w, r)P (z|d, r, w) (2)

P (z|d) = k3

∑

w,r

m(d,w, r)P (z|d, r, w) (3)

P (r|z) = k4

∑

w,d

m(d,w, r)P (z|d, r, w) (4)

where k1, ..., k4 are normalization constants, and m(d,w, r)
is a co-occurrence matrix that counts the triples (d,w, r).

A typical distribution of P (r|z) is shown in Figure 2.

From this table we can see how the r value is correlated with

z. The foreground topic zFG strongly suggests that the Grab-

Cut segmentation mask is also foreground at the correspond-

ing position, while the ambiguity of the background topic is

higher and does not as often correspond to GrabCut’s back-

ground. The automatic object discovery method is doing in-

ference based on the co-occurrences of the visual words across

images (as PLSA does), and also based on the segmentation

mask returned by GrabCut. The EM algorithm figures out

from data how to optimally make judgements from these two

“sensors”: the GrabCut sensor (which provides {r}) and the

appearance sensor (which provides {w}).

r=0 r=1

zFG 0.29 0.96

zBG 0.71 0.04

Fig. 2. A typical P (r|z).

4. AUTOMATIC SEEDING

In this section, we will use automatic object discovery to as-

sign seeds without any user interaction. Here are the steps:

1. Automatic object discovery determines the topic of each

visual word. In the first iteration, we do not know yet

which topic corresponds to the foreground object. Use

the topic whose positions of visual words has smaller

variance as foreground. These visual words are called

the foreground visual words.

2. Find a bounding box for each image: The location and

scale of the box are the median and four times the stan-

dard deviation of the coordinates of the foreground vi-

sual words. We use the median as it is more robust to

outliers than the mean.

3. Run GrabCut, except that using the computed bounding

box instead of using user input. Get segmentation mask

α for each image.

4. Use segmentation mask to update the r values in auto-

matic object discovery.

5. Repeat from Step 1 until convergence.

We found this iterative algorithm typically converges in

three or four iterations.

Notice that, during automatic object discovery, informa-

tion is flowing across all images because all images share the

same P (w|z) and P (r|z) distributions, whereas during Grab-

Cut, segmentation is done only locally within each image.

5. EXPERIMENTS

We use the Caltech face data set [7] to illustrate the process

and results of our method. The method is general and can be

applied to other object types as well. We randomly sample

twenty images from the Caltech face data set, and resize them

to 448 × 296 pixels.

In GrabCut we use patches found by the Watershed trans-

formation [8] instead of raw pixels as basic units. This speeds

up the processing. Using raw pixels can provide better seg-

mentation, while the method stays the same.

In automatic object discovery the basic units are the visual

words, which are created as follows. First, elliptical patches

are detected by the Hessian Affine interest point detector [9].

We use a codebook size of 500 for quantizing the SIFT de-

scriptors [10] of these patches into visual words. It is worth

mentioning here that the SIFT descriptors, and hence the vi-

sual words, carry texture information, while the patches used

in GrabCut carry color information. Hence our automatic

background cutout method is utilizing information from both

types of features.

Figure 3 demonstrates results. Figure 3(b) is the result

of interactive GrabCut, which requires the user to specify a

bounding box as shown in Figure 3(a). Notice that we use

Watershed segmented patches instead of raw pixels for speed

up, hence the result does not closely follow the object contour,

but raw pixels could certainly be used instead. Figure 3(c) to

(h) shows the result of our automatic method. The red and

green crosses in (c)(e)(g) are the foreground and background

visual words. Based on the foreground visual words (the red

ones), a bounding box is calculated (not shown). Our method

produces the results (d)(f)(h) after the first, second, and third

iteration, respectively. The automatic result in Figure 3(h) is

comparable to the interactive approach in Figure 3(b).

One of the reasons the result is not perfect is due to the

way we calculate the bounding box. Our experience with

GrabCut is that the result is quite sensitive to the preciseness

of the bounding box, in terms of how close the box covers the

IV - 347



(a) Old method: draw a box (b) Result of (a)

(c) Automatic, iter 1 (d) Result of (c)

(e) Automatic, iter 2 (f) Result of (e)

(g) Automatic, iter 3 (h) Result of (g)

Fig. 3. See Section 5 for details.

object. If too much background is included, then the segmen-

tation is rough. On the other hand, if the box is too small, then

some part of the object will be cutout. For example, compar-

ing Figure 3(e) and (g), since the visual words inside the hu-

man face are labeled more correctly in (g), the bounding box

is tighter in (g) than in (e), resulting in the better results in

(h) than in (f). We currently compute the bounding box using

median and variance, but more sophisticated robust statistics

might provide better boxes.

6. CONCLUSIONS AND FUTURE WORK

First, we have shown how background cutout can be achieved

with zero user labeling. This is in contrast to current methods,

where the user needs to label each image separately. We have

shown that, by using the estimated foreground-background

visual words in the automatic object discovery method, a bound-

ing box can be automatically computed and used to initialize

GrabCut. In return, the foreground-background segmentation

mask of GrabCut can be used to update the features in au-

tomatic object discovery, and hence refining the foreground-

background labeling of visual words in the next iteration. Sec-

ond, our method integrates texture and color information in

a novel way: automatic object discovery uses visual words,

which captures texture around interest points; GrabCut uses

color from patches found by Watershed transformation. Com-

pared with previous automatic object discovery methods that

only operate on sparse interest points [11], our method pro-

vides finer segmentation.

Since the visual words are relatively sparse, some regions

of the foreground object might not be sufficiently covered by

the visual words, resulting in biased estimates of the bound-

ing boxes. This could be improved by using denser represen-

tations [12]. Future work also includes allowing the user to

interact with the system after automatic segmentation to cor-

rect falsely segmented pixels. For high quality editing, border

matting after segmentation is desirable.
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