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Abstract
We apply Gaussian process classification (GPC) to man-
made structure segmentation, treated as a two class problem.  
GPC is a discriminative approach, and thus focuses on 
modelling the posterior directly. It relaxes the strong 
assumption of conditional independence of the observed 
data (generally used in a generative model). In addition, 
wavelet transform features, which are effective in describing 
directional textures, are incorporated in the feature vector. 
Satisfactory results have been obtained which show the 
effectiveness of our approach. 
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1 Introduction 
We aim to improve the performance of extracting man-made 
structure (specifically buildings) from 2D images. Several 
researchers have studied man-made structure extraction 
from 2D image data. Oliva and Torralba [1] used principal 
components of the power spectra to create a low-
dimensional holistic representation of the scene. However, it 
is not suitable for images including both man-made regions 
and natural scenes. A technique is proposed in [2] for 
outdoor images classification using colour and texture 
features. But colour and texture features are not very 
effective for representing building structures. Hebert and 
Kumar [3] proposed a hybrid method which extracts generic 
features from the image blocks and labels image blocks 
based on the statistical distribution of the features learned 
from the training data. This Multi-Scale Random Field 
(MSRF) method yields better results compared with most 
other approaches. 

The problem we observed with the current supervised 
learning based segmentation, is that it cannot build a model  
accurate enough. There always exists an overlap between 

man-made structures and other structure/scene classes, 
where the model cannot distinguish one class absolutely 
from another class. This leads to incomplete detection and 
false positives. 

We try to make improvements on two aspects, i.e. 1. 
replacing the widely used generative model, such as in [3], 
with a discriminative Gaussian process (GP) and 2. adding 
some distinguishing  wavelet transform features.  

The probabilistic generative model used in [2, 3] models the 
joint probability of the observed data and the related labels 
where the posterior over the labels is the product of the prior 
and the likelihood under the Bayes’s rule. Data is 
conditionally independent given the class labels  [2] which 
is not true  for man-made structures with obvious 
neighbouring dependencies. In [3], this dependency is 
modelled by a  pseudo-likelihood approximation. 

In contrast, a discriminative model is good at capturing the 
dependencies between the observations without any model 
approximations. It directly models what we want, the 
posterior over labels, without involving the complication of 
a generative model. 

The GP classifier we used in our approach is discriminative, 
sophisticated, and yet tractable.  By learning a function from 
examples, the man-made structure segmentation can be cast 
directly into the GP framework. 

The remainder of the paper has the following structure. In 
Section 2, a description is given on Gaussian Process 
Classification (GPC) as well as an overview of the 
Expectation Propagation (EP) which is an approximate 
Bayesian inference technique for GPC. In Section 3, 
experiment details and results are presented. Section 4 
summarizes the main conclusions of the work and discusses 
possible future extensions.  
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2 Gaussian Processes for  
         Classification

2.1 Gaussian Process Classification 
GP is a collection of random variables, any finite number of 
which has a joint Gaussian distribution [4]. It is fully 
specified by its mean function m(x) and covariance function 
k(x, x’) , expressed as: 

),(~ kmGPf            (2.1) 
We use the GPC which as a Bayesian kernel classifier: 
specifically, as a binary classifier that discriminates between 
classes labeled as -1/+1. 

Suppose we have a dataset D with n observations 
, let and

be the input training image features and 

class labels respectively, .
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Given this training data, we wish to make predictions on 
new class labels  for new inputs by calculating 

 which is related to a latent function .
*y *x
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GPCs can be represented as graphical models [5] as shown 
in Figure 1. Class labels y  are independent of input X  and 
only depend on the latent function value . The GP prior 
with hyperparameters 

f
 is put on the latent function, 

making  and  jointly Gaussian.  if *f

For binary classification, a sigmoid transformation is 
applied to the latent function so as to guarantee a valid 
probabilistic value within the range of [0,1]; We use the 
probit model )()( zz , where  

z
dxxz )1,0|()(            (2.2)

denotes the cumulative density function of the standard 
Normal distribution. 

2.2 Predictions 
Following [6], inference is done by first computing the 
distribution of the latent variable corresponding to a test 
case

dfyXfpfxXfpxyXfp ),|(),,|(),,|( **** (2.3)

where  
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Figure 1. Graphical model for GPCs with n training 
data points and one test data point [5].

is the posterior over the latent variables,  

As described before,  the probit likelihood (2.2)  is used for 
binary classification since  is not Gaussian. )|( ii fyp

n
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)|( Xfp which is the prior, is chosen to be a zero-mean 
Gaussian process  with a covariance function )|',( xxk :
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)|( Xyp  is the marginal likelihood expressed as: 
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A  probabilistic prediction of the class label is given by: 
),,|1( *** xyXyp          

      **** ),|()( dfxDfpf        (2.8) 

Approximations are needed for integrals (approximate the 
non-Gaussian joint posterior with a Gaussian one). 

2.3 Expectation Propagation Approximation 
The EP is an approximate Bayesian inference technique 
which has been applied to GPC [6]. 

By comparing EP with other approximation methods such as 
Laplace method and the sophisticated Markov chain Monte 
Carlo (MCMC), it has been found that [7] EP is superior to 
Laplace and quite accurate compared with MCMC. 

IV - 350



that Kumar [3] used 1 . We used 93 images and the  As stated in [6], the crucial probelm is the posterior 
distribution over the latent variables . It is 
given by Bayes’s rule, as the product of a normalization 
term, the prior and the likelihood as shown in eq (2.4). The 
posterior  is calculated by approximations 
with a Gaussian joint posterior.  The relevant parameters are 
updated sequentially. Implementation details of the EP 
algorithm can be found in Algorithm (3.5) and Algorithm 
(3.6) in [6]. 

),|( yXfp

),|( yXfp

corresponding labels, with all images being cut to 256x256.  

The training images are divided into non-overlapping 16x16 
pixels blocks which are labeled as one of the two classes, i.e. 
building or non-building blocks. 

The 93 training images originally contain 1813 building 
blocks and 20594 non-building blocks. There exists 
redundancy in the non-building blocks, such as sky, ground 
and vegetations, etc. In our test, a training set containing 348 
building blocks and 788 non-building blocks were used by 
selecting the typical scene blocks.  3 Experiments and Results 

3.1 Orientogram Features 
We run Rasmussen and Williams’s [6] program2. It employs 
the EP algorithm for binary GPC. The squared exponential 
covariance functions with isotropic distance measure is used. 

A feature vector is computed at each 16×16 block to 
compute the sophisticated features catching the lines and 
edges patterns in man-made structure, as in  [3]. 

22
2
12 /'exp()|',( xxxxk      (3.2) 

More specifically, a 14 component feature vector [8] is 
generated at  different scales: 1×1, 2×2, and 4×4 blocks. 
These features are derived from “orientograms” which are 
the histograms of gradient orientations in a region weighted 
by gradient magnitudes.  

where ],[ . We refer to as the signal variance, 
and  to as the characteristic length-scale. We set these as 

2

0)log(,5.2)log(

                                                

 (which seem effective for 
the scale of data we experimented with). 

3.2 Wavelet Transform Features 
Figure 3 shows some of the test images together with GPC 
predicative probabilities and segmentation results as well as 
Kumar’s results. It can be seen that the predicative 
probability values of the building blocks are reasonably well 
separated from the rest of the scene block values. The GPC 
segmentation results tend to cover more building blocks and 
have less false detections compared with Kumar’s results. 

LL HL

LH HH

Figure 2. Frequency bands of wavelet transform 
on the 16x16 image block.

Detection rate and false positives are compared in Figure 4
with test results on 12 images. Each point in the chart 
represents one of the 12 images. (a) indicates that with much 
less training data, our solution has a similar detection rate as 
Kumar’s which implies GP plus wavelet features converge 
well on sparse data. (b) shows a with/without wavelet 
features comparison on detection rate. Obviously, the 
detection rate is better by using wavelet features. (c) and (d) 
illustrate that the false positives are all similar either with or 
without wavelet features.  

In addition, we experimented with adding 3 wavelet features: 
using the Haar wavelet transform to capture more directional 
texture information. Each 16x16 block is decomposed by a 
one-level Haar transform into four frequency bands as 
shown in
Figure 2. The three features are computed from HL, LH, HH 
respectively [9] as in eq (3.1). 

4 Conclusions and Future Work 
2
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jiCf           (3.1) In this paper, we have proposed an effective method for 

segmentation of man-made structure from natural scene.  
Satisfactory results are achieved on small training set by  Where is one of the three features, is the wavelet 

coefficients in each frequency band. 
f jiC ,

1 http://www.cs.cmu.edu/~skumar/manMadeData.tar
2 http://www.gaussianprocess.org/gpml/code/matlab/doc3.3 Results 
  /classification.html  The proposed approach was trained and tested using images 
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using the discriminative GP model as well as wavelet 
features. Our experiments have positively indicated that 
GPC has the potential to separate man-made structures 
from natural scenes. Wavelet features can well reflect the 
directional texture properties and are effective in 
enhancing the detection rate. 

The performance of our solution can be improved in 
several aspects. More work should be done to better 
organize the training data coverage. Features of the model 
can be further optimized so as to be more discriminative 
between buildings and non-buildings. In the meantime, 
investigations can also be done on the use of different 

covariance functions and efficient calculation 
approximations for large datasets.  

(a)                                    (b) 

   (a)                                        (b) 

    (c)                                        (d)          
   (c)                                     (d) 

Figure 4. Detection rate (DR) and false positives (FP) 
comparison. (a) DR of GP+ wavelet vs Kumar’s MSRF (b) 
DR of GP+wavelet vs GP w/o wavelet (c) FP of GP+ 
wavelet vs Kumar’s (d) FP of GP+wavelet vs GP w/o 
wavelet. 
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Figure 3. Segmentation results. (a)(b) original images (c)(d) 
Kumar’s results (e)(f) our GP segmentation results (g)(h) 
predicative probabilities of 256 blocks in each image. 
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