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ABSTRACT

Modern airborne laser swath mapping (ALSM) systems 
measure both elevation and reflection intensity of the 
terrain. However, this intensity has been under utilized as a 
feature for image classification because it does not represent 
true terrain radiance. In areas with minimal topographic 
relief, such as beaches, we show that segmenting intensity 
images rather than elevation images has great potential for 
scene analysis.  Several intensity-based features are 
extracted from ALSM data collected along a beach and 
partitioned into three classes to detect the water line. Class-
conditional probability density functions are estimated for 
each feature to asses which are most informative. Results 
indicate significant class separation using centroidal 
features. Their classification performance is evaluated using 
a naïve Bayes classifier and the area under receiver 
operating characteristic curves.  The method presented 
provides a novel feature extraction and a systematic feature 
selection procedure for high-resolution ALSM intensity 
data. 

Index Terms — laser radar, feature extraction, image 
segmentation, image classification, entropy

1. INTRODUCTION 

Airborne laser swath mapping (ALSM), often referred to as 
light detection and ranging (LiDAR), enables sub-meter 
spatial sampling of topography. An ALSM system pulses a 
near-infrared laser from an airborne platform to the ground 
several thousand times per second. By precisely determining 
the position and attitude of the aircraft as well as the angle 
at which each laser pulse leaves the aircraft, the direction of 
the laser pulse toward the ground can be accurately 
calculated. Combining this information with the recorded 
return time of the reflected pulse allows for a three-
dimensional point sampling of the ground and landcover 
[1]. From the resulting ALSM point data, digital images are 
created in which the pixel value corresponds to the mean 
topographic elevation of the points within that pixel.  These 

images often exhibit rms elevation errors of less than 10cm 
over minimally-vegetated surfaces, such as beaches.  For 
most ALSM systems, the points also have associated 
intensity values, which can be similarly interpolated into an 
intensity image.  To date, the intensity values have rarely 
been utilized by earth scientists, largely because they are 
only recorded as relative values.   Thus, they are unitless 
and do not represent absolute surface radiance.

For most ALSM systems, intensity is defined as the ratio 
of return pulse energy to that of transmitted pulse energy, 
and is related to the pseudoreflectance of the ground or 
object the laser spot illuminates.  ALSM intensity measures 
are affected by the following factors: variations in path 
length, surface roughness and orientation (local incidence 
angle), beam divergence, object composition, object 
density, saturation from background reflections, and 
attenuation of the signal through the atmosphere. Generally, 
ALSM intensity values are normalized for path length 
variations before generating an image [2].  Although the 
reflectance cannot be converted to a true radiance for the 
object, we demonstrate that relative intensity measures can 
still provide useful information for image segmentation and 
classification.

Some researchers have assessed the possibility of using 
the intensity information from airborne laser data for 
classification and image generation. [3] evaluated the 
suitability of airborne laser intensity data for land cover 
classification. [4] investigated airborne laser intensity on 
glacial surfaces utilizing comprehensive laser geometry 
modeling and orthophoto surface modeling.  [2] found 
highly effective classifications of buildings and trees from 
ALSM features derived from intensity. 

In this analysis, the potential of ALSM intensity as a 
feature for improved beach-zone image segmentation is 
assessed. A brief description of the data and the numerical 
approach used to generate digital images and extract 
features is presented in Section 2. Section 3 introduces the 
analysis methods used to rank PDF feature separation based 
on entropy divergence measures. Section 4 presents the 
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results of the analysis and Bayes classification performance.  
Conclusions are presented in Section 5.  

2. APPROACH 

The data set investigated was collected by the University of 
Florida (UF) on January 27, 2006 for the St. Augustine 
Beach, FL and surrounding region. The survey was 
conducted at approximately low tide using UF’s Optech 
ALTM 1233 airborne laser scanning system. This area was 
selected since geo-referenced aerial imagery was collected 
on the same flight as the ALSM data. The high-resolution 
imagery enables ground truth labeling for segmenting the 
intensity image into various beach classes for training.

2.1 Automated profiling and data segmentation

Once the data set was obtained, the raw ALSM intensities 
were normalized using a UF-developed program [5] to 
correct for intensity variations due to changes in path length 
and then interpolated into a 1m digital intensity image with 
1m pixel resolution.  Ordinary geo-statistical Kriging was 
used for the interpolation with a linear variogram and 
nugget effect to account for systematic error of ~7cm in the 
vertical, determined by the precision of the GPS trajectory 
for the airplane [6]. The aerial imagery, which was 
georeferenced to the same coordinate frame as the ALSM 
imagery, was used to segment the intensity image into three 
classes: dry beach, wet beach, and water.  All three classes 
are visible in the imagery (see Figure 1). Since coincident 
imagery is not generally available with ALSM data sets, it is 
important to assess the separability of these classes in the 
ALSM intensity data.   

A compute routine was developed to mine the image by 
extracting intensity values along cross-shore profile lines 
oriented roughly orthogonal to the shoreline.  This provides 
the x,y-coordinate and intensity value along each profile in 
1m increments. These profile lines are extracted every 2m in 
the along-shoreline (parallel) direction and extend in the 
cross-shore (perpendicular) from the dune line to 10m past 
the water line.  Once the profiles are extracted, each profile 
line was then segmented into each of the three classes: dry 
beach, wet beach, and water using the ground-truth imagery.   

Figure 1: (Left) 500m×400m aerial photograph of study 
site. (Right) Intensity image derived from ALSM data. 
Intensity is an 8 bit unitless ratio.  Dark pixels have low 
reflectance.  Some data dropout can be seen on the breaking 
waves.

2.2 Feature extraction 

Once the profiles were extracted and classified into dry, 
wet, and water, several features based on intensity were then 
computed for each profile line on a per class basis. Take for 
example a hypothetical feature, 1f .  Then for profile 1l ,

values for 1f  are computed separately for the profile points 

in each class iC  for 1, 2,3i .  Since all three classes 

are present in all profiles, we obtain 1 1,mf l C  for feature 
1 and class 1, where m  indexes the profile number. Results 
are accumulated over all features, profiles, and classes.  This 
approach allows us to examine interclass separation and 
class-conditional probabilities j ip f C  for 1,2,3i
and j  indexing the feature set.   

The following features are mined from the intensity 
profiles: minimum intensity, maximum intensity, median 
intensity, mean intensity, standard deviation of intensity, 
mean curvature, mean gradient, intensity slope.   

Most of the aforementioned features are self-
explanatory, but some require further detail.  Mean gradient 
is based on computing a local gradient every 2 meters along 
the intensity profile, which is smoothed using a moving 
average filter of window size 5, and then taking the mean of 
those gradient values.  The gradient was computed using a 
centralized-difference approximation.  The mean curvature 
was computed as the gradient of the gradient values and 
then taking the mean value for that profile.  The intensity 
slope was computed using a regression line through the 
profile points.   

There are other feature measures that can be derived 
from intensity data, such as texture measures. However, 
many of these measures are based on image processing 
techniques that require moving windows. As explained 
previously, our features are extracted from the values along 
a profile line as opposed to using a moving 2D window or 
data clustering.  This approach was selected to stay 
consistent with the standard practices used in coastal 
erosion studies, which utilize cross-shore and along-shore 
measurements as the most natural coordinate frame.  
Traditional methods are generally based on manually 
surveyed cross-shore profiles spaced at equal intervals. The 
major difference is that ALSM offers several orders of 
magnitude higher sampling density as compared to manual 
surveying methods.   

3. ANALYSIS 

Once the features are computed for each class, their class-
conditional probability density functions (PDFs) are used to 
assess the PDF separability using divergence measures. The 
features that correspond to the most separable PDFs are 
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more likely to yield robust classification. Figure 2 shows 
class-conditional PDFs (likelihoods) for the median 
intensity feature. As observed in these plots, the data in 
feature space are multi-modal and non-Gaussian in 
appearance, as is often the case with ALSM data.  
Therefore, the non-parametric Parzen windowing method 
was selected to estimate the PDFs from the data.  The 
Parzen windowing method uses a d-dimensional histogram 
to estimate the probability density )(xpn  [7] as  
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where n is number of points for feature x, and hn is the edge 
length of a hypercube in feature space.  d=1 for this analysis 
since we extract 1D profiles.   is the window function and 
was chosen to be a univariate Gaussian window since the 
features can be spatially correlated [7]: 
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Crucial to Parzen estimation is the selection of the edge 
length, hn.  If hn is too large it over smoothes the data, and if 
it is too small  approaches a delta function and the PDF 
estimate tracks the samples too closely.  A reasonable value 
for hn was determined empirically to be 1/30th of the range 
of values for each feature.

Figure 2 Class-conditional PDFs estimated using Parzen 
windowing for median intensity.  Notice the non-Gaussian, 
multi-modal nature of data that necessitates a non-
parametric PDF estimation approach. 

Generally, the more separation between classes for a given 
feature, the more probable that feature will lead to 
successful classification. To assess inter-class separation 
across the estimated likelihoods, two performance metrics 
based on relative entropy, i.e. the Kullback-Leibler 
divergence (Dkl), are used: Jensen-Shannon divergence 
(JSD) and a normalized form of JSD. The JSD has the 
following form [8]: 

1( , ) , ,
2 2 2kl kl

P Q P QJSD P Q D P D Q  (3) 

where P and Q are the conditional PDFs of a feature under 
two different classes.  JSD is a symmetric form of Dkl and 
is non-negative.  By taking the square root of the JSD it 
satisfies the triangle inequality and all other properties of a 
metric [8].  The square root form of JSD is often used for 
feature selection in classification problems. 
Therefore, JSD , referred to hereafter simply as JSD, was 
selected as a measure to assess feature discriminability.  

When assessing which features provide more divergence 
between classes using entropy-based measures, such as Dkl, 
one must be cautious. Some features may have larger 
inherent entropies and this can pose problems when 
comparing across different feature spaces.  The standard 
Dkl definition of the divergence is biased towards large 
entropies [9]. Hence, we also use a form of JSD that is 
normalized by the entropy of P and Q:  

1
2

, ,
2 2( , )

2 ( ) 2 ( )

kl kl
P Q P QD P D Q

NJSD P Q
H P H Q

 (4) 

where H is entropy.  This metric is referred to as the 
normalized-JSD (NJSD).

The spatial arrangement of classes in the cross-shore 
seaward direction is dry beach, wet beach, and then water.  
Thus, we can treat the 3-class problem as two 2-class 
problems.  The classification performance of each feature 
was tested using a two-class naïve Bayes classifier and k-
folds cross-validation [7], which is a method that randomly 
divides the data into a test and training set k times. This 
provides a means to test generalization capabilities for each 
feature with the limited training data.   

Receiver operating characteristic (ROC) curves were 
generated for each feature for each of the k classifications.
ROC curves depict classifier performance as a function of 
decision threshold x  in which the true positive rate 

2p x x x C  is plotted on the Y axis and false 

positive rate 1p x x x C  is plotted on the X axis. By 
varying a threshold, ROC curves for the classifier can be 
generated.  Figure 3 below displays example ROC curves 
for three features used for wet beach vs. dry classification.  
The diagonal line represents random guessing.  An 
important property of ROC curves is that they’re insensitive 
to changes in prior class distributions [10].   

To evaluate classifier performance between features the 
area under the curve (AUC) was calculated for each of the 
resulting k ROC curves for each feature using trapezoidal 
integration and then averaged.  AUC is a scalar measure and 
varies between 0 for no classification success, 0.5 for 
random guessing, to 1 for perfect classification results.  The 
AUC is equivalent to the Wilcoxon test of ranks [10].  Thus, 
we expect those features determined to be most separable to 
provide the best classification performance and have an 
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AUC close to 1.  In this regard, the AUC acts as a measure 
of feature separation. 
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Figure 3 k-averaged ROC curves for wet beach vs. water.
(dashed line represents performance of random guessing).  

4. RESULTS 

Table 1 presents separation rankings between wet and dry 
beach for each feature and the mean AUC results.  1 is most 
separable, 8 least separable. The high ranking of mean and 
median is expected since dry sand tends to reflect more than 
wet sand at the system’s near-infrared wavelength of 1064 
nm.  Mean gradient and curvature provide the least 
separation as these values are texture measures.  One 
interesting aspect is the subtle difference between JSD and 
NJSD rankings, such as for max and mean. These 
differences can be viewed as the max feature having more 
inherent entropy compared to the mean feature. By 
normalizing, the bias is accounted for, thereby resulting in 
the mean receiving the highest rank in NJSD.  

Table 1. Dry vs. wet beach rankings 

Table 2. Wet beach vs. water rankings 

As expected the most separable centroidal features 
provide the best classification compared to texture measures 
as observed in the mean AUC.  Maximum AUC is achieved 
in Table 1 for some features due to very distinct changes in 
surface reflectance when moving from dry to wet beach.  
The rankings for wet beach vs. water are presented in Table 
2, where Mean and Median are again highly ranked with 

Median having the highest mean AUC.  The measures 
indicate that wet beach is slightly more separable from dry 
beach than from water.   

5. CONCLUSIONS 

The potential of ALSM intensity measures for improved 
beach-zone image segmentation was assessed. Several 
features were extracted and segmented into important 
classes for coastal-area monitoring. Class-conditional PDFs 
were estimated via Parzen windowing for each feature and 
their inter-class separation ranked using JSD and NJSD. 
Based on Bayes classifications using averaged AUC, results 
strongly indicate that ALSM intensity measures do provide 
useful information for image classification. The method 
presented provides a systematic approach to extract features 
from high-resolution ALSM data over beaches that exploits 
the natural geometry of shorelines and a robust framework 
for ranking inter-class separation for feature selection. 
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