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ABSTRACT

We propose novel Expectation Maximization (EM) based algorithms
for accurate approximation of an empirical probability distribution
of discrete scalar data. The algorithms refine our previous ones in
that they approximate the empirical distribution with a linear combi-
nation of discrete Gaussians (LCDG). The use of the DGs results in
closer approximation and considerably better convergence to a local
likelihood maximum compared to previously involved conventional
continuous Gaussian densities. Experiments in segmenting multi-
modal medical images show the proposed algorithms produce more
adequate region borders.

Index Terms— Linear combination of discrete Gaussians, mod-
ified expectation maximization algorithm.

1. INTRODUCTION

Approximation of empirical probability distributions of scalar mea-
surements with mixtures of probability models is in wide use in ad-
vanced data analysis [2, 6]. Statistical decision making based on
such models is now a common practice in astronomy, physics, re-
mote sensing, medical imaging and many other application areas
where data sets can be extremely large. In many cases, e.g. in multi-
modal images, each prominent peak, or mode of the mixed marginal
distribution of signals relates to a particular object-of-interest (or
class of signals). Then the approximation pursues the goal of sep-
arating individual classes from their mixture in order to use these
models to classify the signals, e.g. segment the objects. The ba-
sic problem essential for precise data classification is to accurately
model not only each peak itself but also the behavior of signals of
each class between the peaks. This is because borders of each object
relate often to intersections of tails of the individual class distribu-
tions. Of course, generally no accurate classification can be achieved
by using only a mixed marginal probability distribution by itself.
Nonetheless, such rough data classification or clustering techniques
are of practical interest in many important application problems, e.g.,
for automated screening of multi-modal medical images obtained by
computer tomography or magnetic resonance imaging.

This paper introduces refined versions of our previous Expec-
tation Maximization (EM) based algorithms [3]. The versions ac-
curately approximate an empirical marginal probability distribution
of discrete scalar data with a linear combination of discrete Gaus-
sians (LCDG), the latter notion being defined in Section 2 below.
The linear combination involves both positive and negative Gasus-
sians so that it approximates empirical data more accurately than a
conventional mixture of only positive components [4, 7]. The main
advantage of LCDG model is that it fits better the discrete empirical
distribution than more conventional continuous Gaussian densities
and their linear combinations in [3].

Historically, the first EM algorithm for estimating parameters
of probability mixtures appeared in the late nineteen sixties [8] (see
also [9]). But this technique received its current name and became
very popular only a decade later after it was successfully applied to
a general problem of parameter estimation from an incomplete data
in [1], and many EM-algorithms exist today to find the maximum
likelihood parameter estimates for mixtures of probability distribu-
tions [5].

2. LCDGMODEL

Let F = [f(q) : q ∈ Q = {0, 1, . . . , Q − 1}; ∑Q−1
q=0 f(q) = 1]

be an empirical probability distribution of discrete Q-ary signals q.
We define a discrete Gaussian (DG) with the mean μ and variance
σ2 as the distribution Ψθ = [ψ(q|θ) : q ∈ Q;

∑Q−1
q=0 ψ(q|θ) = 1]

such that ψ(0|θ) = Φθ(0.5), ψ(q|θ) = Φθ(q + 0.5)) − Φθ(q −
0.5)) for q = 1, . . . , Q − 2, and ψ(Q − 1|θ) = 1 − Φθ(Q −
1.5). Here, Φθ(. . .) is the cumulative Gaussian probability function
with a shorthand notation θ = (μ, σ2) for its mean and variance.
The LCDG model P of the distribution F has Cp positive and Cn

negative DGs: p(q) =
∑Cp

r=1 wp,rψ(q|θp,r)−∑Cn
l=1 wn,lψ(q|θn,l)

with the restricted positive weights w = [wp,., wn,.]:

Cp∑
r=1

wp,r −
Cn∑
l=1

wn,l = 1 (1)

Under a fixed number C = Cp + Cn of the DGs, the model param-
eters are the weights w = {wc; c = 1, . . . , C} and characteristics
of the individual DGs Θ = {θc : c = 1, . . . , C}. Probability distri-
butions form a proper subset of all the LCDGs under the additional
restriction p(q) ≥ 0 that automatically holds for mixtures with no
negative DGs. Just as in [3], we ignore this restriction because our
goal is only to closely approximate the empirical distribution F. We
also assume that the numbers Cp and Cn of the components of each
type are known after an initialization and do not change during the
EM-based refinement of the model parameters. The initialization
provides also the starting parameters w[0] and Θ[0].

Assuming statistical independence of the mixed signals, the op-
timal model parameters are found by the EM-based maximization of
the log-likelihood of the empirical data:

L(w,Θ) =
∑
q∈Q

f(q) log p(q) (2)

To estimate the parameters of the LCDG model, we modified
the conventional EM algorithm for estimating parameters of normal
mixtures [9] to account for the DGs with alternating signs as shown
in Section 3. Because this modification is sensitive to its starting
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state, a close initial LCDG-approximation of the empirical distribu-
tion is built by a sequential EM-based algorithm presented in Sec-
tion 4.

3. EM BASED REFINEMENT OF THE LCDG

A local maximum of the log-likelihood in Eq. (2) is given with
the EM process [3, 9]. Let p[m](q) =

∑Cp
r=1 w

[m]
p,rψ(q|θ[m]

p,r ) −∑Cn
l=1 w

[m]
n,l ψ(q|θ[m]

n,l ) denote the current LCDG at iterationm. Rela-
tive contributions of each signal q ∈ Q to each positive and negative
DG at iterationm are specified by the respective conditional weights

π[m]
p (r|q) =

w
[m]
p,rψ(q|θ[m]

p,r )

p
[m]
w,Θ(q)

; π[m]
n (l|q) =

w
[m]
n,l ψ(q|θ[m]

n,l )

p
[m]
w,Θ(q)

(3)

such that the following constraints hold:

Cp∑
r=1

π[m]
p (r|q)−

Cn∑
l=1

π[m]
n (l|q) = 1; q = 0, . . . , Q− 1 (4)

The EM process iterates the following two steps until the changes
of the log-likelihood become small:

E– step [m+1]: Find conditional expectations of the parameters
w[m+1], Θ[m+1] using the fixed weights of Eq. (3) for the
step m as conditional probabilities, and

M– step [m+1]: Find the latter weights by maximizingL(w,Θ)

under the fixed parameters w[m+1], Θ[m+1].

This block relaxation process is converging to a local maximum of
the likelihood in Eq. (5). It is easily shown by using the constraints
of Eq. (4) as unit factors and rewriting the log-likelihood of Eq. (2)
in the equivalent form:

L(w[m],Θ[m]) =

Q∑
q=0

f(q)

⎡
⎣ Cp∑

r=1

π[m]
p (r|q) log p[m](q)

⎤
⎦

−
Q∑

q=0

f(q)

[
Cn∑
l=1

π[m]
n (l|q) log p[m](q)

]
(5)

Let us replace the term log p[m](q) in the first and the second brack-
ets, respectively, with the equal terms which follow from Eq. (3):
logw

[m]
p,r +logψ(q|θ[m]

p,r )−log π
[m]
p (r|q) and logw

[m]
n,l +logψ(q|θ[m]

n,l )−
log π

[m]
n (l|q). At the E-step, the expected weights

w[m+1]
p,r =

∑
q∈Q

f(q)π[m]
p (r|q); w[m+1]

n,l =
∑
q∈Q

f(q)π[m]
n (l|q)

follow also from the conditional Lagrange maximization of the log-
likelihood in Eq. (5) under the restriction of Eq. (1). The expected
parameters of each DG are also the conventional unconditional MLEs
that stem from the maximization of the log-likelihood after each dif-
ference of the cumulative Gaussians is replaced with its close ap-
proximation by the Gaussian density (below “c” stands for “p” or
“n”, respectively):

μ
[m+1]
c,r = 1

w
[m+1]
c,r

∑
q∈Q

q · f(q)π
[m]
c (r|q)

(σ
[m+1]
c,r )2 = 1

w
[m+1]
c,r

∑
q∈Q

(
q − μ[m+1]

c,i

)2

· f(q)π
[m]
c (r|q)

The M-step performs the conditional Lagrange maximization of the
log-likelihood of Eq. (5) under the Q restrictions of Eq. (4) and re-
sults in the same weights π[m+1]

p (r|q) and π[m+1]
n (l|q) as in Eq. (3)

for all r = 1, . . . , Cp; l = 1, . . . , Cn and q ∈ Q. This modified
EM-algorithm is valid until the weights are strictly positive but the
iterations should be terminated when the log-likelihood of Eq. (5)
begins to decrease.

4. SEQUENTIAL EM-BASED INITIALIZATION

We assume that the number of dominant modesK equal to the num-
ber of classes (objects) is known. To simplify the notation, let us
consider the bi-modal case when the empirical distribution have only
two separate dominant modes representing a desired object and its
background, respectively. The algorithm below is easily extended to
the general case ofK > 2 dominant modes. Initially, each dominant
mode is roughly approximated with a single DG, and deviations of
the empirical distribution from the dominant two-component mix-
ture are described with other components of the LCDG. Therefore,
the model has the two dominant positive weights, say,wp,1 andwp,2

such that wp,1 + wp,2 = 1, and a number of “subordinate” weights
of smaller absolute values such that

∑Cp
r=3 wp,r −∑Cn

l=1 wn,l = 0.
The following sequential algorithm accurately estimates both

the number of the non-dominant DGs and all the weights and pa-
rameters of the LCDG components:

1. Approximate the empirical mixed distribution F with the dom-
inant mixture P2 of two DGs using the EM algorithm from
Section 3 with only the positive weights (it closely resembles
the conventional one in [9]).

2. Find all the deviations δ(q) = f(q)−p2(q); q ∈ Q, between
F and P2 and split them into the positive Δp = [δp(q) =
max{δ(q), 0} : q ∈ Q) and the negative Δn = [δn(q) =
max{−δ(q), 0} : q ∈ Q] parts such that δ(q) = δp(q) −
δn(q).

3. Compute the factor s =
∑Q−1

q=0 δp(q) ≡ ∑Q−1
q=0 δn(q) to

scale the deviations up.

4. If the factor s is less than an accuracy threshold, terminate the
algorithm and return the dominant model PC = P2.

5. Otherwise consider the scaled-up absolute deviations 1
s
Δp

and 1
s
Δn as two new “empirical distributions” and use itera-

tively the EM algorithm from Section 3 with only the positive
weights to find sizes (Cp, Cn) and parameters of mixtures
of only positive DGs, Pp and Pn, respectively, that approx-
imate best the scaled-up deviations. Each size is found by
sequential minimization of the total absolute error between
the scaled-up deviation, Δp (or Δn), and its mixture model,
Pp (or Pn) with respect to the number of the components.

6. Scale down the subordinate models Pp and Pn (i.e. scale
down the weights of their components) and then add the scaled
model Pp and subtract the scaled model Pn from the dom-
inant mixture P2 in order to form the desired LCDG model
PC of the size C = 2 + Cp + Cn.

The final mixed LCDG-model PC has to be split into the K
LCDG-submodels P[k] = [p(q|k) : q ∈ Q], one per class k =
1, . . . ,K . This is done by associating each subordinate DG with a
particular dominant term as to minimize the expected misclassifica-
tion rate. Let us illustrate the association principle by the bi-modal
case where the two dominant DGs have the mean values μ1 and μ2

such that 0 < μ1 < μ2 < Q− 1. If all the subordinate DGs are or-
dered by their mean values, then those with the mean values smaller
than μ1 and greater than μ2 relate to the first and second class, re-
spectively. The DGs with the mean values in the range [μ1, μ2] are
associated with the classes by simple thresholding, the components
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with the means below the threshold, t, belonging to the the first class.
The chosen threshold minimizes the misclassification rate e(t):

e(t) =

t−1∑
q=0

p(q|2) +

Q−1∑
t

p(q|1) (6)

Figure 1 shows the initial approximation of the bi-modal em-
pirical distribution of Q = 256 grey levels over a typical DC-MRI
(Dynamic Contrast-Enhanced Magnetic Resonance Imaging) slice
of human abdomen. The dominant modes represent the brighter kid-
ney area and its darker background, respectively. After the additive
and subtractive parts of the absolute deviation are approximated with
the DG mixtures, the initial mixed LCDG-model consists of the 2
dominant, 4 additive, and 4 subtractive DGs, that is, Cp = 6 and
Cn = 4. The LCDG models of each class are obtained with t = 78
ensuring the best class separation.
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Fig. 1. Initial LCDG model of the bi-modal empirical grey level dis-
tribution: the DC-MRI slice (a), its empirical grey level distribution
approximated with the dominant mixture of the DGs (b), the scaled-
up absolute deviation of the approximation, (c) approximation er-
ror for the scaled absolute deviation as a function of the number of
the subordinate Gaussians and its LCDG model (c), and the LCDG
model of each class (d) for the best separating threshold t = 78.

5. EXPERIMENTS AND CONCLUSIONS

Figure 2 presents the final LCDG model obtained by refining the
above initial one using the modified EM-algorithm introduced in
Section 3. First 37 iterations of the algorithm increase the log-
likelihood of Eq. (5) from −6.90 to −4.49, and the convergence to
the log-likelihood maximum are considerably more stable than with
our previous algorithm in [3] involving linear combinations of con-
tinuous Gaussian densities. The resulting segmentation has an error
of 1.26% with respect to the expert’s region map. Figure 3 shows
more segmentation results obtained by the proposed algorithm.

Figure 4 shows one more example, namely, the LCDG approx-
imation of a 4-modal empirical grey level distribution for a CTA
(computed tomography angiography) image. The classes represent
dark background and colon, liver and kidney, blood vessels, and
bright bones, respectively, and the goal is to separate the blood ves-
sels in spite of its large intersection with the second one and very
low prior probability. The initialization returns the 13 components
of the LCDG, and the 16 first iterations of the refinement before the
process terminates increase the log-likelihood from −6.18 for the
initial LCDG to −5.10 for the final one. The segmentation with the
final LCDG-models of the classes has the error only about 0.59%
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Fig. 2. Final 2-class LCDG model (a), log-likelihood changes at
the EM-iterations (b), ten components of the final LCDG (c), the
final LCDG model of each class for the best separating threshold
t = 85 (d), the segmentation map (e) for Fig. 1(a), and the “ground
truth” (f) produced by a radiologist. Errors w.r.t. the ground truth
are highlighted by red color.
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Fig. 3. Segmentation of three other kidney DC-MRI images with our
approach, (a) Original DC-MRI images and (b) Our segmentation
results. Error w.r.t the ground truth are highlighted by red color.

with respect to the expert’s map. Figure 5 shows more segmentation
results obtained by the proposed algorithm.

These and other experiments with different multi-modal images
show that the proposed EM-based techniques produce very accu-
rate LCDG-models of empirical probability distributions of scalar
signals, providing our initialization produces proper numbers of the

IV - 375



(a) 0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

f(q)

p4(q)

q (b)

0 10 20 30 40 50
−6.2

−6

−5.8

−5.6

−5.4

−5.2

−5

−4.8

Iteration (c) 0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01

0.012
f(q)
p(q)

q (d)

0 50 100 150 200 250
−5

0

5

10

15 x 10−3

q (e) 0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01

0.012

q

t1=51

t2 = 161
t3 = 242

p(q|1) (Background &
          Colon tissues) 

p(q|2) (Liver & Kidney)

       p(q|3)
(Blood Vessels)  p(q|4) 

(Bones)

(f)

(g) (h)

Fig. 4. Initial and final 4-class LCDG models: a CTA image (a),
its 4-modal empirical grey level distribution approximated with the
dominant 4-component DG mixture (b), log-likelihood changes at
the EM iterations (c), the final mixed LCDG (d), its components (e),
the class LCDGs (f), the blood vessel segmentation map (g), and the
expert’s map (h). Errors w.r.t. the ground truth are highlighted by
red color.

additive and subtractive DGs. The computations are as simple as
in the majority of conventional EM algorithms. The pixel-wise sig-
nal classification based on the final LCDG models of each class and
combined with post-processing yields typically small segmentation
errors with respect to the expert’s maps (e.g. 0.005–4.89% for more
than 532 CT, MRI, and CTA images). The post-processing involves
simple Markov–Gibbs random field (MGRF) models of region maps
with analytically estimated parameters.

Our previous probability models with linear combinations of
continuous Gaussian densities [3] have had similar low segmenta-
tion errors, too. But the LCDG models ensure the EM process has
much more stable convergence to the log-likelihood maximum and
suffers fewer accumulated numerical errors. Conventional normal
mixtures of the same size and under the same post-processing yield
up to ten times larger errors because some inter-class intervals are
covered by single Gaussians. Because each such component com-
bines tails of the two class distributions, the accurate separation of
the class models becomes hardly possible.
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