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ABSTRACT

This paper presents a colorization method in YCbCr color space,
which is based on the maximum a posteriori estimation of a color
image given a monochrome image as is our previous method in RGB
color space. The presented method in YCbCr space is much simpler
than that in RGB space and requires much less computation time,
while both methods in YCbCr and RGB space produce color images
with comparable PSNR values. The proposed colorization in YCbCr
is applied to JPEG compressed color images aiming at better recov-
ery of downsampled chrominance planes. Experimental results show
that colorization in YCbCr is usually effective for quality improve-
ment of JPEG color images.

Index Terms— Colorization, JPEG, MAP estimation, MRF, YCbCr

1. INTRODUCTION

Colorization is usually a computer-aided process of adding color to
monochrome images or movies. Colorization is now generally car-
ried out manually using some drawing software tools. Obviously
such manual work is very expensive and time-consuming.

Several colorization methods [1, 2, 3] have already been pro-
posed which do not require intensive manual effort. Welsh et al.
proposed a semi-automatic method to colorize a monochrome im-
age by transferring color from a reference color image [1]. This
method requires an appropriate reference color image prepared by a
user. Levin et al. have proposed an interactive method, where a user
needs to give some color scribbles and the colors are automatically
propagated to produce a fully colorized image [2]. Horiuchi [3] has
proposed a method where a user gives colors for some pixels and
colors for all other pixels are determined automatically by using the
probabilistic relaxation [4].

We have also proposed a colorization method in red, green, blue
(RGB) color space [5], where unlike previously proposed methods,
the colorization problem is formulated as the maximum a posteri-
ori (MAP) estimation of a color image given a monochrome image.
Markov random field (MRF) [6] is used for modeling a color image
which is utilized as a prior for the MAP estimation. In this paper, we
consider colorization in luminance and chrominance (YCbCr) color
space under the same formulation as in RGB space and derive a sim-
pler and more efficient algorithm than that in RGB space. This is
in principle due to the fact that in YCbCr space luminance compo-
nent is already known from a given monochrome image and only the
other two components have to be estimated.

Then we give a meaningful application of the proposed coloriza-
tion in YCbCr space, i.e., its application to JPEG compressed color
images. JPEG is a commonly used standard to compress digital color
images. In JPEG, Cb and Cr planes are usually downsampled by a

factor of two at its compression stage, and afterward the downsam-
pled chrominance planes are interpolated at its decompression stage.
Aiming at better recover of the downsampled chrominance planes,
the proposed colorization in YCbCr space is applied to JPEG color
images. The proposed colorization algorithm has a structure that
chrominance components are estimated considering luminance com-
ponent which is not downsampled, and therefore we can expect a
better recovery of them.

2. COLOR IMAGE ESTIMATION IN RGB SPACE

In this section, we review our previous colorization method in RGB
space [5].

2.1. Estimation Algorithm

Let xL = {xij ; (i, j) ∈ L} and yL = {yij ; (i, j) ∈ L} 1 denote
a color image and a monochrome image, respectively, defined on a
two-dimensional lattice L = {(i, j); 1 ≤ i ≤ N1, 1 ≤ j ≤ N2}. In
RGB color space, xij = (rij , gij , bij)

T , i.e., a color vector at (i, j)
pixel is composed of red rij , green gij and blue bij components.
We assume that a monochrome image yL = {yij ; (i, j) ∈ L} is
associated with a color image xL = {xij ; (i, j) ∈ L} under the
following relation:

yij = aTxij = 0.299rij + 0.587gij + 0.114bij ,

0 ≤ yij , rij , gij , bij ≤ 255. (1)

Given yL, xL can be estimated by maximizing the a posteriori
probability p(xL | yL), i.e., by MAP estimation. The MAP estimate
x̂L is written as

x̂L = arg max
xL

p(xL | yL), (2)

where the a posteriori probability p(xL | yL) is described as

p(xL | yL) =
p(yL | xL)p(xL)P
xL p(yL | xL)p(xL)

. (3)

Considering (1), p(yL | xL) is described as

p(yL | xL) =
Y

(i,j)∈L
1(yij = aTxij), (4)

where

1(yij = aTxij) =

j
1 if yij = aTxij

0 otherwise.
(5)

1In this paper, xA and f(xA) denote the set {xa1 , . . . , xal} and the mul-
tivariable function f(xa1 , . . . , xal ) respectively, where A = {a1, . . . , al}.
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Assuming a Markov random field (MRF) for xL and then using the
mean field approximation, p(xL) can be decomposed as

p(xL) �
Y

(i,j)∈L
p(xij | 〈x〉ηij ), (6)

where ηij denotes (i, j) pixel’s neighborhood and 〈x〉ηij denotes
the mean fields for xηij . Substituting (4) and (6) into (3) and re-
placing

P
xL

Q
(i,j)∈L by

Q
(i,j)∈L

P
xij

, we obtain the following

decomposition for p(xL | yL):

p(xL | yL) �
Y

(i,j)∈L
p(xij | yij , 〈x〉ηij ), (7)

where

p(xij |yij , 〈x〉ηij ) =
1(yij = aTxij)p(xij | 〈x〉ηij )P
xij

1(yij =aTxij)p(xij | 〈x〉ηij )
. (8)

In the following, xηij is simply used for 〈x〉ηij . Then p(xij |
yij ,xηij ) = p(xij | yij , 〈x〉ηij ) is considered as local a posteriori
probability (LAP). Using these LAPs, the global optimization prob-
lem shown by Eq. (2) is approximately decomposed into the local
optimization problems

x̂ij = arg max
xij

p(xij | yij ,xηij ). (9)

In order to solve (9) for all (i, j) pixels, their neighboring color vec-
tors xηij should be given. Since such a problem as shown in (9) can
be solved iteratively as is popular in numerical analysis, we rewrite
Eq. (9) as

x
(p+1)
ij = arg max

xij

p(xij | yij ,x
(p)
ηij

), (10)

where p represents the pth iteration.
Regarding p(xij | xηij ) in (8), a Gaussian MRF is here used

whose local conditional probability density function (pdf) is given
as

p(xij | xηij ) =
1

(2π)3/2|Σ|1/2
exp{−1

2
(xij − x̄ηij )

T

Σ−1(xij − x̄ηij )}, (11)

x̄ηij =
1

|N |
X
τ∈N

xij+τ . (12)

Here x̄ηij is the mean of neighboring pixels’ color vectors xηij =
{xij+τ , τ ∈ N}, where N denotes the neighborhood of (0, 0) pixel.
For example, N = {(0, 1), (0,−1), (1, 0), (−1, 0)} for the first-
order neighborhood, and if τ = (0, 1), xij+τ = xi,j+1. Σ is the co-
variance matrix of xij−x̄ηij . Considering (1), (8), (11) and (12), the
local MAP estimation (10) is rewritten as the following constrained
quadratic programming problem:

minimize (xij − x̄ηij )
TΣ−1(xij − x̄ηij )

with x̄ηij =
1

|N |
X
τ∈N

x
(p)
ij+τ , (13)

subject to aTxij = yij , 0 ≤ rij , gij , bij ≤ 255. (14)

2.2. Initial Color Estimation

Since the color estimation shown by Eq. (10) is carried out itera-
tively, an initial color image is needed to start the iterative procedure.
Assuming that color vectors for K pixels, sikjk , k = 1, . . . ,K are
given, we consider an initial color estimation procedure which con-
sists of the following two steps (see Ref [5] for details).

(1) Selection of a reference color vector
A reference color vector for (i, j) pixel is selected from given K ref-
erences, sikjk , k = 1, . . . ,K , using a measure which considers both
spatial distance from each reference and luminance value difference
between (i, j) pixel and each reference.

(2) Color estimation using a reference
Once a reference sikjk is selected for (i, j) pixel, an initial estimate
x

(0)
ij can be determined as the closest point to sikjk within the plane

aTxij = yij .

3. COLOR IMAGE ESTIMATION IN YCBCR SPACE

Let xij = (yc
ij , c

b
ij , c

r
ij)

T denote a color vector at (i, j) pixel in
YCbCr space, where yc

ij is a luminance component and cbij and
crij are two chrominance components. In the following, let cij =

(cbij , c
r
ij)

T for notational convenience. Considering that yc
ij in a

color image is equal to yij in its monochrome image and using the
same kind of Gaussian MRF in YCbCr space as shown in (11) and
(12), the local MAP estimation for cij becomes the following mini-
mization problem:

minimize (xij − x̄ηij )
TΣ−1(xij − x̄ηij )|yc

ij=yij

with x̄ηij =
1

|N |
X
τ∈N

x
(p)
ij+τ . (15)

Note that the local MAP estimation in YCbCr space becomes a sim-
ple unconstrained optimization problem, whereas in RGB space it is
a constrained one.

The solution of (15) is explicitly described as follows. Let the
covariance matrix in the Gaussian MRF in YCbCr space,

Σ =

0
@ σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

1
A =

„
σy Σyc

Σcy Σc

«
, where σy =

σ11, Σc =

„
σ22 σ23

σ32 σ33

«
, and Σyc = (σ12, σ13) = ΣT

cy . The

Gaussian MRF in YCbCr space p(xij | xηij ) can be decomposed as

p(xij | xηij ) = p(yc
ij | yc

ηij
)p(cij | yc

ij ,xηij ), (16)

p(yc
ij | yc

ηij
) =

1

(2πσy)1/2
exp{− 1

2σy
(yc

ij − ȳc
ηij

)2},
(17)

p(cij | yc
ij ,xηij ) =

1

(2π)|Σc|y|1/2
exp{−1

2
(cij −mc|y)T

Σ−1
c|y(cij −mc|y)}, (18)

where

mc|y = c̄ηij +Σcyσ
−1
y (yc

ij − ȳc
ηij

), (19)

Σc|y = Σc −Σcyσ
−1
y Σyc. (20)

Considering that yc
ij = yij and the maximum of (16) is derived at

cij = mc|y , the reestimate of cij , c(p+1)
ij is derived as

c
(p+1)
ij = c̄ηij +Σcyσ

−1
y (yij − ȳηij ), (21)
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where

c̄ηij =
1

|N |
X
τ∈N

c
(p)
ij+τ , (22)

ȳηij =
1

|N |
X
τ∈N

yij+τ . (23)

In initial color estimation, chrominance components of a se-
lected reference for (i, j) pixel are used as those of x(0)

ij , i.e., c(0)
ij .

4. EXPERIMENTAL RESULTS

In order to compare colorization performance in YCbCr space with
that in RGB space, experiments were carried out using four standard
color images (Lena, Milkdrop, Peppers, Mandrill). These images
are 256 × 256 pixels in size and 24 bit per pixel (bpp) full color
images. Their monochrome images were produced by the transform
shown in (1) from the original color images and used for coloriza-
tion experiments. For initial color estimation, several numbers of
reference color vectors were given from each original image, whose
positions in the image were randomly selected. It is fair to select
reference positions randomly because colorization performance de-
pends on positions of given references.

The local MAP estimation in RGB space, i.e., the constrained
quadratic programming problem in (13) and (14), was here directly
solved using a quadratic programming solver [7]. In YCbCr space,
the solution of (15) is given in (21) with (22) and (23). In the cal-
culation of x̄ηij in (13) and in (15), the third-order neighborhood2

was used and x
(p)
ij+τ whose luminance value yij+τ is far from yij

was excluded from the calculation. In the following experiments, if
|yij+τ − yij | > 0.5s, where s is the standard deviation of lumi-
nance values averaged over four images, x(p)

ij+τ was excluded from
the calculation of x̄ηij . For the covariance matrixΣ in (13) and (15),
the average of normalized covariance matrices (normalized by their
maximum components) for four images was used.

Table 1. Colorization performance (PSNR(dB)) using 25 references
in YCbCr and RGB space

image YCbCr RGB
initial 25.1 ± 1.0 24.9 ± 0.9

Lena final (� iter.) 26.4 ± 1.1 (4.1) 26.3 ± 1.0 (4.2)
initial 23.4 ± 1.1 23.6 ± 1.5

Milkdrop final (� iter.) 24.3 ± 1.1 (5.4) 24.2 ± 1.5 (5.2)
initial 20.8 ± 0.5 20.7 ± 0.5

Peppers final (� iter.) 23.0 ± 0.9 (7.9) 22.6 ± 0.8 (7.9)
initial 17.3 ± 0.7 17.1 ± 0.7

Mandrill final (� iter.) 19.4 ± 1.0 (9.1) 19.3 ± 1.0 (9.5)

Colorization performance using 25 references measured by PSNR
value and CIELAB distance is shown in Table 1 and Table 2, respec-
tively. Experiments were carried out 20 times using randomly se-
lected references and each result is shown as mean value ± standard
deviation of 20 experimental values in the tables. For each image,
the upper row shows performance of initial color estimation and the
lower row shows the final result after the iterative MAP estimation.

2For the third-order neighborhood, N = {(0, 1), (0,−1), (1, 0),
(−1, 0), (1, 1), (−1,−1), (1,−1), (−1, 1), (0, 2), (0,−2), (2, 0), (−2, 0)}

Table 2. Colorization performance (CIELAB distance) using 25 ref-
erences in YCbCr and RGB space

image YCbCr RGB
initial 8.5 ± 0.8 11.3 ± 1.7

Lena final 7.3 ± 0.8 8.7 ± 1.8
initial 21.2 ± 2.1 22.4 ± 3.2

Milkdrop final 20.5 ± 1.7 21.2 ± 2.6
initial 31.8 ± 2.5 32.2 ± 2.1

Peppers final 24.0 ± 3.4 24.4 ± 3.1
initial 22.7 ± 3.1 25.0 ± 4.0

Mandrill final 17.4 ± 2.9 19.2 ± 3.4

Iterations were stopped when the difference of estimated color com-
ponents averaged over all pixels at a current and the previous itera-
tion became less than 0.5. Mean of the number of iterations is also
given in Table 1. It is seen that colorization performance in YCbCr
measured by PSNR is comparable to that in RGB and that in YCbCr
measured by CIELAB distance is a little bit better than that in RGB.
Regarding computation time, colorization in YCbCr took approxi-
mately only one fourth the computation time in RGB, though even
in RGB space it took only 6 seconds at most to colorize one image.
This time reduction is due to the aforementioned unconstrained opti-
mization in YCbCr space resulting in the simple computation shown
in (21). Note that in RGB space, a certain amount of numerical com-
putation is needed to solve the constrained quadratic programming
problem.

5. APPLICATION TO JPEG COLOR IMAGES

In JPEG compression, R, G, B color components are converted to Y,
Cb, Cr components and each of the three color planes is processed
independently. The chrominance planes, Cb and Cr planes are usu-
ally downsampled by a factor of two. At JPEG decompression stage,
the downsampled Cb and Cr planes are interpolated by repetition fol-
lowed by spatial smoothing with a low-pass filter.

The proposed colorization in YCbCr space is applied to JPEG
compressed color images, where the interpolated and smoothed chromi-
nance components are used as initial values c(0)

ij s for the iterative
MAP estimation. The iterative MAP estimation shown in (21) has
a structure that chrominance components are estimated considering
luminance component which is not downsampled, and therefore we
can expect a better recovery of them. In the application to JPEG
color images, one or two iterations were enough for the MAP esti-
mation and the following experimental results are those by one iter-
ation. The covariance matrix in (15) for each image was computed
using each JPEG compressed image.

Experimental results are shown in Fig. 1 and Fig. 2, where
PSNR values are plotted for four different quality factor (qf) im-
ages: qf=60, 70, 80, and 90, and the leftmost and the rightmost point
of each line correspond to qf=60 and qf=90, respectively. Larger
quality factor image has higher quality and larger PSNR value with
larger bit rate (larger file size). Fig. 1 shows results for Lena of three
different pixel sizes: 128 × 128, 256 × 256, and 512 × 512 pixels.
It is seen that significant improvement on PSNR value is achieved
particularly in small size cases. Fig. 2 shows colorization results
applied to JPEG compressed four color images of 256 × 256 pix-
els in size. It is seen that colorization is effective to improve PSNR
value of JPEG compressed images except for Peppers with qf=90
and Mandrill. Fig. 3 shows a closeup result for Milkdrop, where
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Fig. 1. Experimental results on colorization applied to JPEG com-
pressed color image Lena of 128 × 128, 256 × 256, and 512 × 512
pixels in size.
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Fig. 2. Experimental results on colorization applied to JPEG com-
pressed four color images of 256 × 256 pixels in size.

quality improvement can be visually perceived. From these results,
it could be addressed that colorization in YCbCr space is usually
effective for quality improvement of JPEG color images except for
very complex and/or textured images such as Mandrill.

6. CONCLUSIONS

This paper presented a colorization method in YCbCr space, which
is in principle based on the MAP estimation of a color image given
a monochrome image as is our previous method in RGB space. The
presented method in YCbCr space is much simpler than that in RGB
space and requires much less computation time: about one fourth
the computation time in RGB space. As for quality of estimated
color image, both methods in YCbCr and RGB space produce color
images with comparable PSNR values.

The proposed colorization in YCbCr space was applied to JPEG
compressed color images aiming at better recovery of downsampled
chrominance planes. Experimental results show that colorization in
YCbCr space is usually effective for quality improvement of JPEG
color images.
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