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ABSTRACT
Blind restoration of blurred images is a classical ill-posed

problem. There has been considerable interest in the use of

partial differential equations to solve this problem. The blur-

ring of an image has traditionally been modeled by Witkin

[10] and Koenderink [4] by the heat equation. This has been

the basis of the Gaussian scale space. However, a similar the-

oretical formulation has not been possible for deblurring of

images due to the ill-posed nature of the reverse heat equa-

tion. Here we consider the stabilization of the reverse heat

equation. We do this by damping the distortion along the

edges by adding a normal component of the heat equation in

the forward direction. We use a stopping criterion based on

the divergence of the curvature in the resulting reverse heat

flow. The resulting stabilized reverse heat flow makes it pos-

sible to solve the challenging problem of blind space varying

deconvolution. The method is justified by a varied set of ex-

perimental results.

Index Terms— Image restoration, image analysis, partial

differential equations, diffusion equations

1. INTRODUCTION

The problem that is addressed in this paper is one of de-

blurring an image Y (x) that has been blurred by a blurring

kernel h(x) representing some physical process. This prob-

lem is modeled by the convolution relation:

Y (x) =
∫

U(t)h(x− t)dt (1)

where x can denote a 2D space in which case U(x) might

represent an image. As is normally assumed the function h(x)
has the properties that it is non-negative, and the integral of

the function h(x) is unity.

As shown by Guichard and Morel [3], the blurring of an

image is proportional to its Laplacian. The process of blurring

can be modeled by the heat equation as follows

∂u

∂t
= c�u, u(x, 0) = I0(x) (2)

Here u represents the image being diffused using the heat

equation, c is the diffusion coefficient, �u is the Laplacian

of u and I0(x) is the initial deblurred image. The use of the

heat equation has also been used by Witkin [10] and Koen-

derink [4] in the formation of the notion of scale space. An

important work along these lines has been use of anisotropic

diffusion for edge preserving denoising by Perona and Malik

[6]. While there has been much work done on the forward as-

pect of heat diffusion [8], relatively less work has been done

on the reverse aspect of the heat equation. The reverse heat

equation is ill-posed and so its use has been limited. Osher

and Rudin [9] in their work proposed the use of “shock” fil-

ters which are hyperbolic partial differential equations. These

are stable and have good convergent properties. However,

they provide piecewise constant results and do not achieve

true deblurring. Another work has been the use of stabilized

inverse diffusion equations [7] by Pollak et al.. They also use

an approximation to the inverse diffusion which has a physi-

cal motivation. However, they also do not approach the true

reverse heat equation. A very recent work [2], has explored

the use of reverse heat equation with a non-local means based

additional criterion. They perform alternating steps of reverse

heat and non-local regularization. The alternate formulation

that we provide is simpler. Here, we solve the problem of

deblurring by using the reverse heat equation. Since the re-

verse heat equation is ill-posed we stabilize it by controlling

the disruption of edges. This is achieved by adding a nor-

mal component of the heat equation in the forward direction.

We also formulate a stopping criterion for terminating the re-

verse heat equation process when the deblurring of the image

is completed. In the next section we discuss the reverse heat

equation and its stabilization.

2. STABILIZED BACKWARD HEAT EQUATION

The reverse heat equation is given as

∂u

∂t
= c�u

u(x, τ) = I(x) (3)
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where�u denotes the Laplacian of u, I(x) is the blurred ob-

servation and c is the diffusion coefficient. We have to find

the solution

u(x, 0) = I0(x). (4)

This is achieved by reversing time in the heat equation

∂u

∂t
= −c�u, u(x, 0) = I(x). (5)

However implementing eqn(5) can be done only for a few

time steps and then the resulting image blows up due to the

high pass nature of the resulting operation. It boosts the noise,

especially along the edges where the Laplacian has high val-

ues. Explicit edge information can be considered in the heat

equation by considering the geometric form of the heat equa-

tion
∂u

∂t
=

∂2u

∂η2
+

∂2u

∂ζ2
= uηη + uζζ . (6)

Here η refers to the normal and ζ to the tangential direction.

The diffusion along the normal is given by

uηη =
uxxu2

x + 2 ∗ uxyuxuy + uyyu2
y

u2
x + u2

y

(7)

and the diffusion along the tangent is given by

uζζ =
uxxu2

x − 2 ∗ uxyuxuy + uyyu2
y

u2
x + u2

y

(8)

Since the diffusion along the normal diffuses across the edges

and diffusion along the tangent continues along the edges, the

blurring in an image is caused more due to diffusion along

the normal. Therefore in order to stabilize the reverse dif-

fusion, the reverse diffusion across the edges has to be done

at a slower rate as compared to reverse diffusion along the

tangent. The diffusion along the normal is a more divergent

process and has to be done at a slower rate. Thus in order to

stabilize the reverse diffusion we add a forward component of

diffusion along the normal. The resultant stabilized form of

the heat equation is given by

ut = −c�u + βuηη (9)

Here we use c > β in order to ensure the overall reverse

nature of the diffusion. The diffusion is carried out until a

stopping criterion is reached which corresponds to the initial

required solution I(x, 0).

3. RELATION TO OTHER TECHNIQUES

We now consider the analysis of shock filters and Kramer’s

algorithm as explored by Guichard and Morel [3]. Osher and

Rudin in their “shock filter” formulation, proposed the fol-

lowing equation

∂u

∂t
= −sign(�u)|∇u| (10)

where ∇u is the gradient of u. This equation enhances the

Hildreth-Marr edges. Kramer defined a filter that sharpens

blurred images by replacing the gray level value at a point

x by either the minimum or the maximum of the gray level

values in a circular neighborhood. Guichard and Morel [3]

proved that the PDE underlying the Kramer filter is

∂u

∂t
= −sign

(∇2u(∇u,∇.u
)

(11)

where∇u is the gradient of u. This filter enhances the Canny

edges. While, both these filters perform edge enhancement,

they are not equivalent to the actual reverse heat equation,

as compared to the proposed approach which is based on the

reverse heat equation itself.

The non-local reverse heat equation proposed recently [2]

is closely comparable to the proposed technique. The non-

local reverse heat equation is given as

∂u

∂t
= −�u + λNL0u (12)

where

NL0u(x) =
1

C(x)

∫
e

Gσ∗|u(X+)−u(Y +)|2(0)
h2 u(y)dy, (13)

where C(x) is the normalizing factor, h acts as a filtering

parameter and Gσ is the Gaussian kernel with standard de-

viation σ. Here NL0 is the non-local means filter [1] and

it means that u(x) is replaced by a weighted average of u(y).
The weights are significant only if a Gaussian window around

y looks like the corresponding Gaussian window around x.

This approach is certainly interesting. The main difference,

as is evident by comparing eqns(9) and (12), is that in our

approach we rely more on the local normal component of the

heat equation to stabilize the equation as compared to the non-

local component used by Buades et al.. Since the objective

has been to closely approximate the reverse heat equation, the

damping by using a normal component of the heat equation

itself satisfies this criterion in a better way.

4. STOPPING CRITERION

Consider the eqn(3) using which we have to estimate the ini-

tial condition given in eqn(4), i.e. we have to estimate the

value of u(x, 0) = I0(x). The eqn(5) has to be stopped when

u(x, t) = u(x, 0). However, here we do not know the value

of u(x, 0). An observation that can be used is that the eqn(3)

is valid only till time t = 0 and it breaks down if we go be-

yond this time. The modified reverse heat equation given in

eqn(9) will not be valid for the value of time t < 0. Hence,

beyond this point the solution will degenerate rapidly. This

observation can be used for stopping the reverse heat equa-

tion. If we consider the image as a manifold with at least C2

continuity, the degeneration of the solution can be detected by
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the divergence of the curvature. In eqn (9), since the normal

component is added, the tangential term is diffused in reverse

direction more rapidly. The tangential term corresponds to

curvature driven motion. Since, the curvature driven term is

reversed at a faster rate, the degeneration in this term happens

before degeneration in the normal component. Hence, the di-

vergence of curvature can be used as an indicator that the im-

age approximates the desired initial image. Further, when the

divergence of the curvature happens, the degeneration in the

normal component would happen in a few more time steps,

based on the difference of the weightage given to them. And

hence, the degeneration of the curvature is a good indicator

for stopping. The curvature is given by

κ =
uxxu2

x − 2uxyuxuy + uyyu2
y

(u2
x + u2

y)3/2
(14)

The eqn(9) is stopped when the change in curvature exceeds

a threshold, i.e. κt > θ. Comparatively, the shock filter for-

mulation [5] is a convergent procedure and does not require a

stopping criterion. In the non-local means based reverse heat

equation [2], the authors suggest stopping the reverse heat

equation when the value of the Laplacian exceeds twice the

value of the initial Laplacian. But using this criterion results

in certain artifacts being generated due to the degeneration of

the solution.

5. IMPLEMENTATION DETAILS

In the implementation of the reverse heat equation, the bound-

ary conditions were assumed to be Neumann boundary con-

ditions, i.e. the gradient is zero along the boundary. We now

consider the values of the various constants. In eqn(9) the val-

ues of c and β are chosen to be small and c > β. Additionally,

they must be small enough to maintain CFL conditions. Here

we have chosen values of c as 0.2 and β as 0.02. These values

have been empirically chosen. The value of θ used for setting

the threshold for change in curvature was 0.3

6. RESULTS

We first justify the use of the proposed technique by consid-

ering the performance of the reverse heat equation when used

for deblurring without any modification. The results using the

reverse heat equation are shown in fig. 1(c)&(d). Fig. 1(a)

shows the original Lena image that is blurred with a constant

Gaussian blur with standard deviation 3.0. Fig. 1(b) shows

the blurred input image. Fig. 1(c) shows the result of using

the reverse heat equation for 2 iterations. As seen in the fig-

ure use of reverse heat effectively starts deblurring the input.

But as can be seen in fig. 1(d), which shows the resultant im-

age after applying the reverse heat equation for 10 iterations,

this equation is unstable and the values blow up quickly. We

next evaluate the proposed technique by experimentally com-

paring the method with the shock filter method [5]. Note that

the proposed technique as well as the shock filter method do

not use any information about the nature of the blurring func-

tion and both perform blind deconvolution. Fig. 1(e) shows

the result of applying the shock filter. As can be seen while

the shock filter preserves the strong edges, the weak texture

edges are strongly affected in this method. This is because the

shock filter does not approximate the reverse heat equation

appropriately. Fig. 1(f) shows the result using the proposed

technique. As can be seen, the result achieves true deblurring

as can be seen from the texture on the hat and hair. Here the

method took 19 iterations (as compared to original reverse

heat blowing up in 10 iterations) before the stopping crite-

rion was satisfied over the entire image. The result is closely

comparable to the original image. Quantitative comparison in

terms of PSNR values establish around 1.5 db improvement

over the input image and around 10db improvement over the

shock filter method.

We next consider an experiment of performing blind space
varying deblurring. We blur a sand texture image obtained

from the Brodatz texture database with a Gaussian blur func-

tion with the standard deviation being increased from 1.0 to

1.5 from left to right. Fig. 2(a) shows the input image and

Fig. 2(b) shows the blurred input image. The input image

is restored using the shock filter and this result is shown in

fig. 2(c). As can be seen, the shock filter method results in

a piecewise constant resultant image where much of the tex-

ture information is lost. This particularly emphasizes the need

for the proposed technique. Fig. 2(d) shows the result of the

proposed technique. As can be seen, using the proposed tech-

nique one can obtain deblurring of the input image with very

little artifacts being present. The results quantitatively show

around 3db improvement over the input image and around

3.7db improvement over the shock filter method.

7. CONCLUSION

Here we present a technique which addresses the challenging

problem of blind space varying deblurring. The problem is

modeled using the heat equation and deblurring is framed as

a problem of solving the reverse heat equation. The unstable

nature of the reverse heat equation is addressed by adding the

normal component of the reverse heat equation in the forward

direction. A curvature based stopping criterion appropriately

stops the reverse heat equation without artifacts being intro-

duced in the solution. The results obtained justify the feasi-

bility of the proposed theory.
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