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ABSTRACT
In this paper, we present an adaptive bilateral filter (ABF) for

sharpness enhancement and noise removal. ABF sharpens an

image by increasing the slope of the edges without producing

overshoot or undershoot. Our new approach to slope restora-

tion significantly differs from the previous slope restoration

algorithms in that ABF does not involve detecting edge ori-

entations or edge profiles. Compared with the bilateral fil-

ter, ABF restored images are significantly sharper. Compared

with an unsharp mask (USM) based sharpening method – the

Optimal USM (OUM), ABF restored edges are as sharp as

those rendered by the OUM, but without halo. ABF also out-

performs the bilateral filter and the OUM in noise removal.

Index Terms— bilateral filter, sharpness enhancement,

noise removal, image restoration, slope restoration

1. INTRODUCTION

The problem we are interested in is twofold. First, we are

very interested in developing a sharpening method that ren-

ders clean and crisp edges without halo. Second, we want to

present a unified solution to both sharpness enhancement and

noise removal.

In terms of noise removal, the conventional linear filter

works well in smooth regions, but significantly blurs the edge

structures of an image. A lot of research have been done on

edge-preserving noise removal. One of the major endeav-

ors in this area has been to utilize the rank order informa-

tion [1, 2]. Due to a lack of the sense of spatial ordering,

rank order filters generally do not suppress Gaussian noise

optimally. In more recent years, a new approach to edge-

preserving de-noising was proposed by Tomachi et al [3] and

Smith et al [4]. Although their algorithms were developed

independently, and named “SUSAN” filter and “bilateral fil-

ter” respectively, the essential idea is the same: enforcing both

geometric closeness in the spatial domain and gray value sim-

ilarity in the range in the de-noising operation. The edge-

preserving de-noising bilateral filter proposed by Tomasi et al
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adopts a low pass Gaussian filter for both the domain filter

and the range filter [3]. The domain low pass Gaussian filter

gives higher weights to pixels that are spatially close to the

center pixel. The range low pass Gaussian filter gives higher

weights to pixels that are similar to the center pixel in gray

value. Combining the range filter and the domain filter, a bi-

lateral filter at an edge pixel becomes an elongated Gaussian

filter that is oriented along the edge, which ensures that aver-

aging is done mostly along the edge and is greatly reduced in

the gradient direction. This is the reason why the bilateral fil-

ter can smooth the noise while preserving the edge structures.

In terms of image sharpening, USM remains the preva-

lent sharpening tool despite the drawbacks it has: First, USM

sharpens an image by adding overshoot and undershoot to the

edges which produces halo around the edges. Second, when

applied to a noisy image, USM amplifies the noise in smooth

regions which significantly impairs the image quality. To ad-

dress the first problem, several slope restoration algorithms

have been proposed [5, 6]. They either modify the edge pro-

files in the edge normal direction, or to simplify the prob-

lem, modify the 1D horizontal/vertical projection of the edge

profiles. These 1D based slope restoration methods tend to

produce artifacts in natural images and their effectiveness is

not well demonstrated. The adaptive bilateral filter (ABF) we

propose also aims to restore edge slope, but without the need

to locate edge normals or obtain edge profiles. Therefore,

ABF is efficient to implement. We will show in Sec. 4 that

ABF produces clean, crisp, and artifact-free edges.

To address the second problem, locally adaptive sharp-

ening algorithms have been proposed. Kim et al developed

an Optimal Unsharp Mask (OUM) algorithm in which the

strength of the USM is locally adaptive [7]. To obtain the

optimal λ for different regions of the image, OUM classifies

the pixels based on their response to a Laplacian of Gaussian

(LoG) filter [7]. The optimal filter strength for each class is

estimated by training with pairs of high quality original and

the corresponding degraded images. Results show that OUM

sharpens the detail areas as well as a conventional USM, while

significantly reducing the noise in the smooth regions. Our

proposed ABF algorithm is based on the bilateral filter. The

parameters are optimized in a way similar to that of the OUM.
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We will compare the results from ABF, OUM, and the con-

ventional bilateral filter.

The rest of this paper is organized as follows: In Sec. 2,

we present our ABF. In Sec. 3, the optimization of the pa-

rameters in ABF is described. In Sec. 4, the performance of

ABF is evaluated and compared with that of the OUM and the

bilateral filter. Finally, conclusions are given in Sec. 5.

2. THE ADAPTIVE BILATERAL FILTER (ABF)

The shift-variant filtering operation of the proposed ABF and

its impulse response are shown in (1) and (2), respectively.

f̂ [m, n] =
∑

k

∑
l

h[m, n; k, l]g[k, l] , (1)

where f̂ [m, n] is the restored image, h[m, n; k, l] is the re-

sponse at [m, n] to an impulse at [k, l], and g[m, n] is the de-

graded image.

h[m, n; m0, n0] = I(Ωm0,n0)r
−1
m0,n0

e
−

�
(m−m0)2+(n−n0)2

2σd
2 �

· e
− 1

2 � g[m,n]−g[m0,n0]−ζ[m0,n0]
σr [m0,n0] � 2

, (2)

where [m0, n0] is the center pixel of the window, Ωm0,n0 =
{[m, n] : [m, n] ∈ [m0 −N, m0 + N ]× [n0 −N, n0 + N ]},
I(·) denotes the indicator function, and rm0,n0 normalizes the

volume under the filter to unity.

Compared with the conventional bilateral filter given in

[3], ABF contains two important modifications: First, an off-

set ζ is introduced in the range filter. Second, both ζ and the

width of the range filter σr in ABF are locally adaptive. If

ζ = 0 and σr is fixed, ABF will degenerate into a conven-

tional bilateral filter. For the domain filter, a fixed low pass

Gaussian filter with σd = 1.0 is adopted in ABF. The combi-

nation of a locally adaptive ζ and σr transforms the bilateral

filter into a much more powerful filter that is capable of both

smoothing and sharpening. Moreover, it sharpens an image

by increasing the slope of the edges. To understand how ABF

works, we need to understand the role of ζ and σr in ABF.

The range filter can be interpreted as a one dimensional

filter that processes the histogram of the image. We will il-

lustrate this viewpoint for the window of data enclosed in the

black box in Fig. 1 (a1), for which the histogram is shown in

Fig. 1 (a2). For the conventional bilateral filter, the range fil-

ter is located on the histogram at the gray value of the current

pixel and rolls off as the pixel values fall farther away from

the center pixel value as shown in Fig. 1 (a2). By adding

an offset ζ to the range filter, we are now able to shift the

range filter on the histogram. As before, let Ωm0,n0 denote

the set of pixels in the (2N + 1)× (2N + 1) window of pix-

els centered at [m0, n0]. Let MIN, MAX, and MEAN denote

the operations of taking the minimum, maximum, and aver-

age value of the data in Ωm0,n0 , respectively. Let Δm0,n0 =
g[m0, n0] − MEAN(Ωm0,n0). We will demonstrate the ef-

fect of bilateral filtering with a fixed domain Gaussian filter

(σd = 1.0) and a range filter (σr = 20) shifted by the follow-

ing choices for ζ.

1. No offset (conventional bilateral filter): ζ[m0, n0] = 0,

2. Shifting towards the MEAN: ζ[m0, n0] = −Δm0,n0 ,

3. Shifting away from the MEAN, to the MIN/MAX:

ζ[m0, n0] =
⎧⎨
⎩

MAX(Ωm0,n0)− g[m0, n0], if Δm0,n0 > 0,
MIN(Ωm0,n0)− g[m0, n0], if Δm0,n0 < 0,
0, if Δm0,n0 = 0.

(3)

As we can see from Fig. 1, shifting the range filter towards

MEAN(Ωm0,n0) will blur the image (Fig. 1 (c1)). Shifting

the range filter away from MEAN(Ωm0,n0) will sharpen the

image (Fig. 1 (d1)). In the case of operation No. 3, the range

filter is shifted to the MAX or the MIN depending on Δm0,n0 .

The reason behind these observations is the transformation of

the histogram of the input image by the range filter. In our

case, the data window Ωm0,n0 marked in Fig. 1 (a1) con-

tains an edge. Therefore, the histogram of the data window

contains two peaks, as shown in (a2), which correspond to

the darker and brighter sides of the edge, respectively. Any

pixels located between the two peaks appear on the slope

of the edge. The conventional bilateral filter without offset

does not significantly alter the histogram or edge slope, as

shown in (b2) and (b3), respectively. Shifting the range filter

to MEAN(Ωm0,n0) at each pixel will redistribute the pixels to-

wards the center of the histogram, as shown in (c2). Hence the

slope is reduced, as shown in (c3). On the other hand, if we

shift the range filter further away from the MEAN(Ωm0,n0),

pixels will be compressed against the two peaks, as shown

in (d2). The slope will be increased, as shown in (d3). We

need to point out here that shifting the range filter based on

Δm0,n0 is very sensitive to noise. In Sec. 3, we will describe

a different strategy for choosing ζ that is much more reliable.

The parameter σr of the range filter controls the width of

the range filter. If σr is large compared to the range of the data

in the window, the range filter will assign similar weights to

every pixel in the range. Therefore, it does not have much

effect on the overall bilateral filter. On the other hand, a small

σr will make the range filter dominate the bilateral filter. By

making ζ and σr adaptive and jointly optimizing both pa-

rameters, we transform the bilateral filter into a much more

powerful and versatile filter. To smooth a pixel, we can shift

the range filter towards MEAN(Ωm0,n0), and/or use a large

σr which enables the spatial Gaussian filter to take charge in

bilateral filtering. To sharpen a pixel, we can shift the range

filter away from MEAN(Ωm0,n0) towards MAX(Ωm0,n0) or

MIN(Ωm0,n0), depending on whether it is above or below the

midpoint of the edge slope. At the same time, we reduce σr

accordingly. With a small σr, the range filter dominates the

bilateral filter and effectively pulls up or pushes down the pix-

els on the edge slope.
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3. OPTIMIZATION OF ABF PARAMETERS

The parameter optimization is formulated as a Minimum Mean

Squared Error (MMSE) estimation problem. We classify the

pixels into T classes, and estimate the optimal ζ and σr for

each class that minimizes the overall MSE. Let P be the to-

tal number of training image sets. The k − th set (k =
1, 2, ..., P ) consists of an original image fk[m, n], a degraded

image gk[m, n], the class index image Lk[m, n], and the re-

stored image fk[m, n]. All four of these images have dimen-

sions Mk ×Nk. Let

S(k) = {[m, n] : [m, n] ∈ [0, Mk − 1]× [0, Nk − 1]} , (4)

be the set of indices for the pixels in these images. Also let

S(k)
i = {[m, n] : Lk[m, n] = i and [m, n] ∈ S(k)} ,

i = 1, 2, ..., T, (5)

Given the P training image sets as described above, the

optimal parameters { �ζ∗, �σr
∗} satisfy:

{ �ζ∗, �σr
∗} = arg min

{�ζ, �σr}

P∑
k=1

‖fk[m, n]− f̂k[m, n]‖2S(k) , (6)

where ‖A‖2B denotes the L-2 norm of the array A over the

index set B, �ζ = {ζi : i = 1, 2, ..., T}, and �σr = {σr,i : i =
1, 2, ..., T}.

Since the classes are independent and non-overlapping,

we can estimate the optimal �ζ and �σr for each class indi-

vidually by replacing S(k) in the norm on the right side of

(6) by S(k)
i , and {ζ∗, σr

∗} on the left side by {ζi
∗, σr,i

∗},
i = 1, 2, ..., T .

We used five training images to estimate ζ and σr. The

high quality original images are from the training images used

in OUM. The degraded images are generated by a blur point

spread function (PSF) and a tone-dependent noise model. Both

the training images and the degradation process are described

in [7]. Each pixel in the degraded image is classified by a

9× 9 LoG operator with σ = 1.5 [7]. The LoG class number

Lk[m, n] at pixel [m, n] is the LoG response rounded to the

nearest integer. For pixels with LoG response greater than 60

or less than -60, the class number is set to be 60 and -60, re-

spectively. Figure 2 shows the resulting optimal parameters.

4. RESULTS AND DISCUSSIONS

The performance of ABF is evaluated with the image “Kids”.

Kids was taken by a Canon Autoboy-A automatic analog cam-

era, printed as a 4 × 6 in2 photo, and scanned at 600 dpi [7].

In Fig. 3, we zoom in to compare the rendering of the smooth

regions, the edges, and the textured areas. Figure 3 (b) shows

ABF is the most effective one in removing the noise on the

girl’s shirt. The conventional bilateral filter reduces noise, but

does not restore the sharpness of the image. Both ABF and

OUM significantly sharpen the edges of the text. However,

the text on the boy’s shirt rendered by ABF does not have the

halo that appears in the OUM restored image. Both ABF and

OUM are able to sharpen the grass in the background. The

OUM rendered grass looks more contrasty; but the contrast

of ABF rendered grass is closer to that of the original image.

Figure 3 (c) shows the edge profiles at edge pixel A inside the

right marked region in Fig. 3 (a). The bilateral filter does not

change the slope of the edge. The OUM increases the slope

but results in large overshoot and undershoot. The ABF en-

hances the slope the most without generating overshoot and

undershoot around the edges.

5. CONCLUSIONS

In this paper, we present an adaptive bilateral filter (ABF)

which is developed in the framework of the conventional bi-

lateral filter. ABF outperforms the bilateral filter in noise

removal. At the same time, it renders significantly sharper

images. Compared with an USM based adaptive sharpening

method – OUM, ABF stored edges are as sharp as the OUM

restored edges, but without the halo artifacts that OUM pro-

duces. Our new approach to slope restoration does not in-

volve edge orientation estimation or edge profile extraction.

It is therefore efficient to implement.
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Fig. 1. Illustration of the effect of bilateral filtering with a

fixed domain Gaussian filter (σd = 1.0) and a range filter

(σr = 20) with the three choices of ζ described by opera-

tions No. 1 (2nd row), No. 2 (3rd row), and No. 3 (4th row).

(a1) The degraded image “Boy”, the black box marked on

the “Boy” denotes a 25 × 25 data window Ωm0,n0 . (a2) The

histogram of the image data in Ωm0,n0 . The range filter at

the center pixel [m0, n0], MEAN(Ωm0,n0), and g[m0, n0] are

marked on the histogram; (a3) The 3D plot of the data in

Ωm0,n0 . Starting with the second row, the first column il-

lustrates the restored images from the three operations; the

second column shows the resultant histograms of Ωm0,n0 ;

and the last column shows the 3D plots of the filtered data

in Ωm0,n0 .
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Fig. 2. The estimated optimal parameters for each class. (a)

Optimal ζ, (b) optimal σr.
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Fig. 3. Results: (a) Test image “Kids”: 3439 × 2344. The

regions inside the two boxes in (a) will be zoomed in to com-

pare results from bilateral filter (σr = 5 and σd = 1), OUM,

and ABF; (b) zoom in of the left marked region in (a); (c) edge

profiles taken at an edge pixel “A” inside the right marked re-

gion in the degraded image, the bilateral restored image, the

ABF restored image, and the OUM restored image; (d) zoom

in of the right marked region in (a).
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