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ABSTRACT
In this paper, an example-based image denoising algorithm

is introduced. Image denoising is formulated as a regression

problem, which is then solved using support vector regres-

sion (SVR). Using noisy images as training sets, SVR mod-

els are developed. The models can then be used to denoise

different images corrupted by random noise at different lev-

els. Initial experiments show that SVR can achieve a higher

peak signal-to-noise ratio (PSNR) than the multiple wavelet

domain Besov ball projection method on document images.

Index Terms— image denoising, support vector regres-

sion, wavelet, PSNR

1. INTRODUCTION

Denoising is an important historical and current problem in

image processing. Considerable research has been done [1,

2]. The wavelet transform-based approach is one of the most

effective for image denoising [3, 4, 5, 6, 7] for photographic

images. Indeed, denoising is one of the most important appli-

cations of wavelets. Promising results have been reported in

these references.

Even as simple an operation as thresholding in the wavelet

domain can effectively reduce noise while preserving image

edges. For typical photographic images, most of the wavelet

coefficients have very small magnitudes, although there are a

few large ones that represent important high frequency fea-

tures of an image such as edges. Since white noise disperses

evenly among all wavelet coefficients, removing small wavelet

coefficients reduces most of the noise energy while retaining

most of the image energy. This sparseness property is useful

in image denoising in order to maintain the sharpness of the

edges in an image. The wavelet basis used in image denois-

ing should provide a sparse representation. Recently, mul-

tiple wavelet basis image denoising methods [7, 8, 9] have

been proposed. These algorithms generally provide better

denoising results than conventional wavelet thresholding. In

this paper, the multiple wavelet basis Besov ball projections

(MWBBP) method [7] is compared with the proposed denois-

ing algorithm.

The support vector regression denoising algorithm is a

new procedure that is based on a machine learning approach.

We formulate image denoising as a regression problem and

use support vector regression in solving the problem. In the

training phase, support vector regression (SVR) is trained to

learn a mapping from a series of noisy training images to the

originals. Then, in the test phase, the trained SVR can per-

form denoising on images that were not in the training set.

The wavelet characteristics of certain types of images,

such as document images, are different from those of natural

images that have a sparse representation. Therefore, wavelet-

domain denoising on these images is not as efficient as it is

on natural images. SVR based image denoising can easily

overcome such a limitation simply by including examples of

non-natural images (such as document image) in the training

set.

This paper is organized as follows. Section 2 presents the

proposed algorithm. Comparative experiments are shown in

Section 3 and Section 4 contains a brief concluding remark.

2. SUPPORT VECTOR REGRESSION BASED
DENOISING

Given training data (X1; y1), . . . , (Xl; yl), where Xi are in-

put attribute vectors (in noisy image) and yi are the associ-

ated output values (in the original image), traditional linear

regression seeks a linear function WT X + b that minimizes

the mean square error:

min
w,b

l∑

i=1

(yi − (WT Xi + b))2. (1)

where W is the corresponding weight vector for X and b
is the intercept (the constant term). If the input data is not

linearly distributed, a linear function is inadequate. Support

vector machines introduce a kernel function φ(x) to map the

data into a higher dimensional space, where a linear func-

tion is adequate. Commonly used kernel functions are linear,

polynomial, Gaussian, sigmoid etc. In the high-dimensional

space, overfitting can occur. To limit overfitting, a soft margin
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and a regularization term are incorporated into the objective

function. Support vector regression [10] solves the following

modified optimization problem:

min
W,b,ξ,ξ∗

1
2
WT W + C

l∑

i=1

(ξi + ξ∗i ) (2)

subject to yi − (WT φ(Xi) + b) ≤ ε + ξi,

(WT φ(Xi) + b) − yi ≤ ε + ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l,

where ξi is the upper training error, (ξ∗i is the lower training

error) subject to the ε−insensitive tube |y−(WT φ(X)+b)| ≤
ε and ε is a threshold. The cost function ignores any training

data that is close (within the ε−insensitive tube) to the model

prediction. This soft margin method has the advantage of tol-

erating mislabeled samples in the training set. In this objec-

tive function, 1
2WT W is a regularization term that smoothes

the function WT φ(Xi) + b to limit overfitting. Effectively,

within the ε−insensitive tube, the regularization term con-

strains the line to be as flat as possible. The flatness is mea-

sured by the norm WT W .

The application of SVR in image denoising is straightfor-

ward. The input vector is formed by the pixels in a window in

a noisy image. The target value is the central pixel value in the

noise-free image. When the window shifts to a new position,

another sample is added to the data set. The size of the win-

dow may be interpreted as the denoising filter point spread

function (PSF) support. Usually a 3 by 3 window is cho-

sen. A large value is unnecessary and inappropriate since the

correlation between pixels decreases as the pixels are spaced

further apart. Thus the pixels on the boundary of a large win-

dow provide little information about the central pixel in the

window. Moreover, a larger window increases the dimension

of the feature vector which means increased time for train-

ing/testing.

3. EXPERIMENTS

In the experiments, images from the USC-SIPI Database are

used [11]. To illustrate the generalization ability of SVR, the

training set is intentionally limited to very few images i.e. one

or two images. The test images differ from the training im-

ages. Since there are no document image in the database, sev-

eral scanned document images were used in the experiments.

One of those images is shown in Fig. 1. In all the experi-

ments, the size of the neighborhood window is 3 × 3 for the

consideration of computational complexity, a larger window

means that the length of the input vector X is longer and that

will require longer time in training SVR. The training images

are LENA, HOUSE, a document image, and combinations of

these images. Gaussian noise is added to the training images

with a variance of 0.01 except for the document image, where

Table 1. PSNR (dB) comparisons of MWBBP and SVR (us-

ing two models) based image denoising

Image Noisy MWBBP SVR

Lena Lenahouse

Aerial 16.82 23.61 22.64 23.43

Boat 16.82 24.69 23.87 23.90

Cameraman 17.12 24.14 22.76 22.84

Baboon 16.70 23.10 22.84 22.94

Peppers 16.93 26.20 24.12 25.02

Texture 16.78 20.52 21.74 21.63

Document 14.37 17.79 18.57 19.13

Average 16.50 22.86 22.36 22.70

Table 2. PSNR (dB) comparisons of two SVR models and

MWBBP on natural images and document images

Image Noisy MWBBP SVR

Doc Lena DocLena

Tiffany 17.77 24.98 23.41 23.25 24.05

Elaine 16.83 24.93 19.26 23.58 21.82

Doc1 14.63 16.86 20.60 16.98 20.35

Doc2 14.50 16.32 19.58 16.07 19.36

Average 15.93 20.77 20.71 19.97 21.40

the noise variance was 0.05 so that the texts would be illegi-

ble. In the test images, the noise variance varies from 0.01 to

0.04 in steps of 0.01 for the non-document images while the

noise variances in the document images varies from 0.05 to

0.08 in steps of 0.01. The noise levels in the test images are

different from those in the training images. LibSVM [12], an

implementation of SVR, is used in our experiments.

The peak signal-to-noise ratio (PSNR) can be used to mea-

sure the quality of the denoised image, since the original im-

age is available in the simulation. PSNR is defined as:

PSNR = 10 log10

∑M
i=1

∑N
j=1 2552

∑M
i=1

∑N
j=1(f(i, j) − f̂(i, j))2

(3)

where f̂(i, j) is the denoised image, and f(i, j) is the original

image. The size of the images is M × N .

Table 1 summarizes the result on some of the test images.

For each test image, four noise levels are applied and the av-

eraged PSNR of the four denoised images is computed. There

are two SVR models used. One is trained on the LENA image,

the other is trained on both the LENA image and the HOUSE

image. It can be seen that MWBBP works better on the test

images except for the document image and the texture im-

age, whose wavelet domain characteristics are significantly
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1. (a) The noisy PEPPERS image, Gaussian noise variance is 0.01, PSNR = 20.11 dB. (b) The denoised image by

MWBBP, PSNR = 27.88 dB. (c) The denoised image by Lena SVR model, PSNR = 26.54 dB. (d) The denoised image by doc

SVR model, PSNR = 27.92 dB. (e) A noisy document image, PSNR = 12.85 dB. (f) The denoised image by MWBBP, PSNR =

16.43 dB. (g) The denoised image by the LENA SVR model, PSNR = 16.10 dB. (h) The denoised image by doc SVR model,

PSNR = 19.67 dB.
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different from those of natural images. The results also show

that the expanded training set yields a better model for de-

noising as the PSNR of the images denoised using the Lena-

House SVR model are generally higher than those by the SVR

trained on the LENA alone. This is not surprising. Although

our test dataset was modest, we performed statistical analysis

on the difference between MWBBP and the SVR results in

Table 1. We first computed the differences between MWBBP

and the SVR results as a primary statistic, then performed a z
test on the set of δ so acquired (compared to a null hypothesis

of zero-mean). For the LENA set, the one-tailed p-value was

0.035; for the LENAHOUSE set, the one-tailed p-value was

0.056. These results support a statistically relevant difference

between the MWBBP and SVR results.

To illustrate that a specific model improves the denoising

quality, we trained another SVR model from a document im-

age that resembles the test document images. As shown in

Table 2, the more specific SVR model resulted in a larger per-

formance difference both in terms of PSNR and visually on

the document test images. On the other hand, the document

SVR does not work well on natural images. However, the per-

formance on the natural images is improved by using another

SVR model that was trained on both the document image and

a photographic image (LENA image).

Fig. 1 shows the comparative results on the PEPPERS im-

age and one of the test document images. Though there are

no significant differences in the results on the PEPPERS im-

age, the result by the SVR trained on the document image

clearly achieved a better denoised document image. In the

MWBBP result, there are many visible distortions around the

text, especially in the upper part of the image. In the region

where there is no text, the SVR result is much cleaner.

4. CONCLUSION

In this paper, we have applied SVR to a new application;

namely, image denoising. Simulations show that SVR can

learn a generally useful model, even one trained on a very

small data set (one or two images). The learned models have

been tested on a variety of images (texture, aerial, nature,

document). Some initial experiments already suggest that

SVR-based image denoising achieves better performance on

non-natural images such as document images than wavelet-

domain based approaches such as the multiple wavelet basis

Besov ball projections method. When the model is trained on

a larger data set, as with other machine learning algorithms,

the result will generally be improved. A more specific train-

ing set can generate a better model that usually can produce

better denoising on the images that are similar to those in the

training set. This suggests that SVR-based image denoising

may need an additional image classification step to compare

the input image and the images in the training sets. However,

wavelet domain methods do not have such limitations. More-

over, the computational cost associated with SVR is higher

than that of the wavelet-domain methods.
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