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ABSTRACT 

 
In this paper, we propose a novel approach for source 
camera identification based on camera gain histogram. By 
using the photon transfer curve (PTC) as camera noise 
model, we construct camera gain histogram from the 
occurrences of different camera gain constants. With the 
distribution of camera gain histogram for each camera, we 
extract four features to characterize the camera. In our 
experiments, 400 photos acquired from two high-end digital 
cameras at two different exposure levels are used to evaluate 
the effectiveness of the proposed approach. A two-class 
support vector machine (SVM) is employed as a classifier. 
Our experimental results demonstrate that the distinction 
rate in identifying different cameras achieves promising 
performance. 
 
Index Terms — source camera identification, CCD noise, 
photon transfer curve, camera gain histogram 
 

1. INTRODUCTION 
 
With the advances in digital image processing techniques, 
digital photos can now be easily manipulated, synthesized 
and tampered in numerous ways without leaving visible 
clues. Even though when nowadays photos are largely used 
as important evidence in court, “authenticity” of digital 
photos is still a big question mark. As a consequence, source 
camera identification [1, 2, 3] becomes a hot topic to help 
checking the trustiness of digital photos. 

The goal of source camera identification is to determine 
which camera is used to capture the test photos. The basic 
idea of source camera identification comes from the 
manufacturing process of cameras. Although most digital 
cameras can store the imaging-related information in the 
output file header, such as camera manufactory, camera 
model, exposure level, and date of photos, the contents in 
the file header could be easily modified or removed using 
image editing tools. Therefore the photo file header can no 
longer provide reliable information for identifying source 
camera. 
  As CCD sensor is not a perfect device in which the sensor 
output carries not only pure signal but also various noise 
components, sensor noise model could be used as a 
representative feature for cameras. For example, at low 

illumination level, dark current noise which generated in 
totally dark condition dominates the sensor noise. As the 
illumination increases, the sensor noise becomes more 
signal-dependent. Therefore, photon transfer curve (PTC) is 
useful to represent the relationship between the sensor 
output and the corresponding noise [4]. By plotting the noise 
standard deviation as a function of the sensor output on a 
log-log scale, we can use PTC to characterize camera noise. 
For example, using PTC as the camera noise model for the 
development of noise filtering has been proposed in [5, 6]. 
  This paper aims to discuss the source camera 
identification problem based on the distribution of camera 
gain histogram. In a typical CCD imaging process, camera 
gain constant is a very important conversion constant. It is 
viewed as a combined parameter accomplished by a series 
of functional blocks in a camera. Once the PTC is estimated, 
the camera gain constant is computed by the sensor output 
value and the corresponding noise variance. By recording 
the occurrences of different camera gain constant values, we 
can then generate the camera gain histogram. Next, we 
proposed to extract four features from the camera gain 
histogram to characterize the camera noise model. Finally, 
we adopt the support vector machine (SVM) for the 
classification to distinguish different source cameras. 
  The rest of this paper is organized as follows. Section 2 
explains the proposed approach and the formulations.  
Section 3 shows the experimental results. Finally, Section 4 
gives the conclusion. 
 

2. PROPOSED APPROACH 
 
2.1. Camera noise model 
 
In this section, we first describe the relationship between the 
photon transfer and the camera noise model. The photon 
transfer technique is certified to be helpful for calibrating 
and characterizing the CCD systems [4]. A photon transfer 
curve (PTC) is plotted under various camera sensor output 
and corresponding noise standard deviation on a log-log 
scale. Since camera RAW output is analogous to the camera 
sensor output; PTC can be approximated by the noise curve 
from RAW photos. An ideal PTC is composed of three 
distinct regions, according to the slope changes (as shown in 
Fig. 1). The first region is characterized by a flat curve at the 
lower illumination level. In this region, the intensity of 
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Fig. 1 An ideal photon transfer curve (PTC) of a camera. 

 
noise is independent of the sensor output, such as dark 
current noise and read-out noise. As the CCD system 
receives much more photons, the noise tends to be 
signal-dependent. The curve with slope of approximately 
1/2 depicts the second region. Within this region, the shot 
noise is dominant at the middle illumination level. The third 
region is denoted at higher illumination level, indicating that 
the intensity of noise is proportional to the sensor output; 
hence the slope of curve in this region is 1. Although the 
fixed pattern noise is dominated in this region, it can be 
removed by modern digital camera using flat fielding. The 
suddenly decrease of the noise intensity at higher 
illumination level is due to the physical full well. Hence, we 
can feasibly assume a two-region PTC by eliminating the 
affect of the third region in our experiment. 
 
2.2. Camera gain histogram 
 
Camera gain histogram is a graphical version designed to 
display occurrences of camera gain constant. The camera 
constant K is defined as 
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where  is the average pixel value, 2

s
 and 2

d
 are the 

variance corresponding to the signal-dependent and 
signal-independent noise components. Although the value of 
camera gain constant K is affected by various , 2

s
 and 

2
d
, we can still obtain a camera gain histogram using the 

summarized information of different K and its occurrences. 
Fig. 2 shows two instances of simulated camera gain 
histogram for two digital cameras used in our experiment. 
 
2.3. Feature extraction 
 
Given the distribution of camera gain histogram for each 
camera, we proposed to extract four statistical features from 
the histogram to characterize the camera. The four features 
we adopted in this paper are as follows: 

(a) (b) 

(c) (d) 

(e) (f) 
Fig. 2 The camera gain histogram per color channel (RGB) of two 
digital cameras: (a), (c) and (e) belong to Nikon D80; (b), (d) and 
(f) belong to Canon EOS 350D. The occurrences are normalized in 
order to emphasize the difference between the distributions of two 
camera gain histograms. 
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where h denotes the quantized value of camera gain 
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(a) 

 
(b) 

Fig. 3 (a) The photo captured at exposure level 1 and (b) the photo 
captured at exposure level 2. 
 

Table 1 Parameter Settings of two cameras 

 Exposure 
level 1 

Exposure 
level 2 ISO Maximal 

pixels 
Nikon 
D80 F 4.5 / 80 F 4.5 / 125 800 3872×2592 

Canon 
EOS 
350D 

F 4.5 / 80 F 4.5 / 125 800 3456×2304 

 
constants for 0 h L. The estimation of P(h) is simply 
defined by 
 

M
hNhP ,                   (6) 

 
where N(h) indicates the number of occurrences of camera 
gain constant corresponding to the value h, and M is the 
total number of occurrences in the camera gain histogram. 
We then use a four dimensional feature vector F to represent 
the distribution of camera gain histogram 
 

T
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2.4. Classification 
 
  In this paper, we use a two-class SVM as the classifier to 
classify two different sources of digital cameras. The four- 
dimensional feature vectors belong to each digital camera 
constitute a feature set. This feature set is further divided 
into a training set and a test set for SVM [4] training and 
performance evaluation, respectively. Gaussian kernel is 
utilized in our experiment as the kernel function of the SVM 
classifier. 

 
(a) 

 
(b) 

Fig. 4 Estimated PTC at different exposure level of (a) Nikon D80 
and (b) Canon EOS 350D. The noise curve of exposure level 1 is 
represented by black color, and the noise curve of exposure level 2 
is represented by gray color. 
 

3. EXPERIMENTS 
 
3.1. Photo data set 
 
The photos used in our experiment are acquired from two 
high-end digital cameras: Nikon D80 and Canon EOS 350D. 
Both cameras are set to output the 12-bit RAW image 
format with the maximal pixels and the highest quality. The 
parameter settings of cameras are shown in Table 1. 

At two different exposure levels, we use high ISO value 
of 800 to generate sufficient noisy photos. In order to 
exclude the influences from unpredictable variation (such as 
winds, clouds or lighting changes), outdoor scenes are 
currently not adopted in our experiment. The photos we 
used in the experiments mainly contain indoor scenes. One 
example is shown in Fig. 3. We use two cameras to capture 
400 photos for our experiment, in which 100 scenes are 
captured at two different exposure levels for each camera. 
  In addition, we also acquire 50 photos without any 
irradiance from each camera. We use these photos to 
estimate the noise standard deviation ( d) at lower 
illumination level for the two cameras. 
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Table 2. Identification results at exposure level 1 between two 
cameras 

Predicted  Nikon Canon 
Accuracy 

(%) 
Nikon 21 0 100% Actual Canon 0 21 100% 

 
Table 3. Identification results at exposure level 2 between two 

cameras 
Predicted  Nikon Canon 

Accuracy 
(%) 

Nikon 17 4 81% Actual Canon 2 19 90% 
 

 
Table 4. Identification results between two cameras using the 

combined exposure level 
Predicted  Nikon Canon 

Accuracy 
(%) 

Nikon 36 6 86% Actual Canon 4 38 90% 
 
3.2. PTC estimation and comparison 
 
In order to estimate the PTC from light space, we use a 
series of 100 RAW photos at a fixed exposure level acquired 
from the camera. All the noise standard deviations are 
computed as the standard deviations corresponding to each 
intensity value in the averaged image over all photos. The 
estimation of PTCs are shown in Fig. 4. As Fig. 4 shows, 
two cameras produce similar PTCs, while the Nikon D80 
generates much more fluctuant curves than Canon EOS 
350D does. 
 
3.3. Camera gain histogram and feature extraction 
 
From the estimated PTC, we can obtain numerous values of 
intensity ( ), standard deviation ( s) of signal-dependent 
noise and standard deviation ( d) of signal-independent 
noise. Substituting , s and d into Eq. (1), we then obtain 
the camera gain constant K. Next, we construct the camera 
gain histogram by calculating the occurrences of different K 
value in a quantized manner. A four dimensional feature 
vector is extracted from the camera gain histogram 
including mean, standard deviation, energy and entropy. 
After the feature extraction, the SVM classifier is utilized 
for training and testing. 
 
3.4. Results 
 
In the first part, we investigate the source camera 
identification at different exposure level. The photos at a 
fixed exposure level are divided into 20 sets, and every set 
contains 5 photos. In each set, we compute the camera gain 
histogram and perform the feature extraction per color 
channel. Thus we obtain 60 samples at the exposure level, 
where 39 samples are chosen as training samples and the 
other 21 samples are the test samples. The identification 

results for exposure level 1 and 2 are shown in Table 2 and 
Table 3, respectively. The identification rate is much higher 
at the exposure level 1 than at the exposure level 2. One 
possible explanation is that the noise pattern is unobservable 
at the lower exposure level; hence the classification 
performance is degraded. 

In the second part, we combine the photo data sets from 
the two different exposure level of the same camera. The 
photos belong to one of the two camera are divided into 40 
sets, and every set contains 5 photos. Similarly, in each set, 
we compute the camera gain histogram and extract features 
per color channel. Here, we obtain 120 samples for a camera. 
We choose 78 samples as the training samples and the other 
42 samples as the test samples. The identification results are 
shown in Table 4. From the results of Table 4, we observe 
that the identification rate of Nikon D80 is slightly worse 
than Canon EOS 350D. It is not surprised to obtain this 
result since the noise curve of Nikon D80 is unstable as 
shown in Fig. 4. 
 

4. CONCLUSION 
 
In this paper, we propose a novel approach for the 
identification of source cameras. The PTC is first estimated 
as the noise curve using RAW photos, and the camera gain 
histogram is then derived from the occurrences of different 
camera gain constants. With the camera gain histogram, we 
extract four features from the distribution and then use the 
features for training and testing the SVM classifier. The 
photos acquired from two cameras at different exposure 
levels are adopted as our experiment data sets. Experimental 
results show that the identification rate is satisfactory while 
distinguishing two cameras from different manufactories. 
Nevertheless, we also find that the performance is poorer at 
lower exposure level. Further investigation on the camera 
noise pattern will be our major future work. 
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