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ABSTRACT

Digital fingerprinting techniques aim to embed unique identifi-
cation information into digital content distributed to individual users
in order to track unauthorized use of multimedia files. Fraudulent
users may not only attempt to remove the embedded signatures but
also may form coalitions in order to remove the embedded finger-
print and disable tracking. This makes the design of fingerprints
challenging. An effective fingerprint should not only carry the as-
signed users information but also guard against the possibility of
falsely implicating an innocent user. Furthermore, in possible col-
lusion scenarios, the colluded copies should identify each of the
colluders. The embedded fingerprints should be imperceptible to
maintain the commercial value of the content and preferably the
fingerprint-based identification should survive content preserving sig-
nal processing. In this paper we give a precise description of each of
these requirements and give a solution framework to obtain a set of
fingerprinted images meeting these requirements.

Index Terms— Digital fingerprinting, collusion resilience, POCS,
adaptive marking.

1. INTRODUCTION

Today, digital multimedia dominates over conventional multimedia
environments. Thanks to digital technology and the Internet, it is
now easier to produce and sell digital files. However, the Internet
also provides a non-centralized environment that is susceptible to
unauthorized file sharing. This vulnerability causes significant fi-
nancial losses in many sectors of the industry.

One of the effective ways of dissuading misuse of distributed
digital multimedia copies is to hide a distinct secret message in each
copy to identify the traitor. This method is known as fingerprint-
ing. An important feature of fingerprinting technology compared to
other data hiding techniques is its inherent design to track the col-
luding users who may collectively synthesize a copy for distribution
from their individual copies. This makes the design of fingerprints
challenging since the individual fingerprints embedded in the same
content may be easily removed or attenuated during collusion.

There are several desirable qualities for a fingerprint design.
Firstly, the fingerprint for each user must be detectable in the copy
distributed to them. The interference between content and the em-
bedded signal should be controlled in each copy. The endeavor will
be void if the signal disappears within the content. The fingerprinted
copy should not falsely indicate the presence of other fingerprints
causing false accusations of innocent users. Secondly, the multime-
dia should keep its commercial or artistic value after the data hiding
process. Visual quality degradation should be kept minimal by em-
ploying human visual system models, which allow degradations to
be kept imperceptible.
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Fingerprinting scenarios examined in the literature incorporate
these requirements to varying degrees. The methods proposed in-
clude either coding for collusion resilience [1, 2] or design finger-
prints in an orthogonal fashion to avoid interference between fin-
gerprints [3, 4]. As an alternative we propose explicit mathemati-
cal modeling of the fingerprinting constraints. Fingerprinted images
then can then be determined by set theoretic estimation methods.
Specifically, we consider the design of spread spectrum fingerprints
in this paper.

2. ANALYTICAL DESCRIPTIONS OF FINGERPRINTING
REQUIREMENTS:

Figure 1 illustrates a typical fingerprinting scenario. The finger-
printed images, which look similar to the original copy, go through
a channel where the copy can be compressed or noise may be added.
Then the fingerprinted copies can be averaged to generate a colluded
copy intended for fraudulent distribution. In order to generate fin-
gerprinted copies that satisfy all these requirements is challenging.
We first mathematically model all these requirements and give a
mathematical framework that satisfy all these requirements simul-
taneously.

Next we examine basic requirements of fingerprinting in the
form of constraint sets. A typical set of fingerprinted images should
satisfy these requirements simultaneously. For simplicity we will
consider constraints on individual images. These extend to the entire
collection thorough a simple product space formulation. A spread
spectrum technique is employed to embed the fingerprint informa-
tion into the sequence.

2.1. Identification of individual traitors:

By correlating the suspicious copy with each assigned pseudo-random
sequence a colluding user may be identified with high confidence. In
general, each fingerprinted copy should give a positive response with
key generated pseudo-random sequence. The number of sets in this
category is equal to the number of distributed copies (K).

S{ ={x;: (wj —W]-)T(xj -X)>1tj=1,...,K. (1)
={x:wj (x; - %) >}, j=1,..., K. )

We denote the j** fingerprinted image by x;, the complete col-
lection of the fingerprinted images by x = [x1 ... x%] and j’th
user pseudo-random sequence generated using a corresponding key
by w;. An image size pn-sequence is correlated with mean correc-
tion and compared against a threshold for detection [5]:

The threshold 7, is considered to be same for all agents in the
present paper. However, in situations where different groups of users
may present different risk levels, these values can be set according
to the corresponding risk of the groups.
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Fig. 1. Fingerprinting scenarios.
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2.3. Identification of each colluder in all possible collusion sce-
narios:

There are different strategies for identification of colluders. The pos-
sible goals of fingerprinting can be listed as: Catch-all, catch-some
and catch-one strategy [3]. We consider catch-all strategy and only
the linear averaging attack of all possible coalitions. The correlation
detector should identify each colluder participating in the collusion.
This requirement can be mathematically described as follows:

S3* = {x;: Wi (R, —Rey) 2 Ta}, V(ki€Cr). 4

where C), represents all possible coalition scenarios. There are 2% —
K — 1 sets corresponding to all the possible collusion scenarios.
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SB

Fig. 2. Generic illustration of constraint sets and obtaining finger-
printed images in a 2-colluder scenario.

2.2. Avoiding accusation of benign individual:

The innocent user’s secret sequence should not correlate positively
with other people’s copies. Mathematically speaking, the cross-
correlation between user’s pn-sequences and copies should be kept
below some threshold value.

Sy ={xj:wi (x; =%) <n}, i j=1..., Kji#j ()
There are K x (K — 1) possible crossings between keys and

copies. This is the number of constraint sets to avoid accusation of
innocent users.

2.4. Imperceptibility of fingerprints:

Each fingerprinted copy must maintain fidelity to the original im-
age. In order to ensure this we incorporate an imperceptibility con-
straint for the perturbation introduced by fingerprints. Particularly,
we employ a spatial domain texture masking model proposed by
Voloshynovsky et al. [6]. The model provides pixel-wise upper and
lower bounds for the difference from the original image. The result-
ing constraint can be expressed as:

S)={xj:1<xj—x0<u, j=1,..., K}. 5)

where u and 1 form pixel-wise upper and lower bounds respectively
and x,, is the original image.

2.5. Robustness to compression:

Robustness against content preserving signal processing is desirable.
Here, we concentrate on a common type of non-malicious signal
processing operations: lossy compression, specifically JPEG com-
pression. JPEG compression is performed by quantization of DCT
coefficients of an image at a predetermined rate based on the desired
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image quality. The spread spectrum watermark is robust against
compression if the detector response is above threshold after com-
pression. The set of images that illustrates this kind of robustness
can be approximated as [7]:

5! = {x; : w;  (IDCT(Qo[DCT(x;)]—IDCT(Qo[DCT (x;)])

>4}, j=1,...,K. (6

: k=0,1,...,MN —1.

Q)
where (DCT(x0)), denotes the k™" transform coefficient of the
original image xo and M N denotes the size of the image. Thus
the quantizer Qo[ ] sets the transform coefficients that are zero in
Q[DCT (x0)] to zero and leaves other coefficients unchanged pro-
viding a subspace projection approximations to JPEG compression.

atin={ ¢ GUDCTeaNd =0

otherwise

2.6. Robustness against Gaussian noise attacks:

Many alterations on the multimedia can be modeled as Gaussian
noise. Hence, achievement of robustness against noise is important.
It is hard to express this set analytically as in robustness to com-
pression set however, it can be handled by asymmetry between the
embedding and detection thresholds. The embedder may aim 7, in
embedding but the detector can compare with 7, — A, where A can
be chosen depending on the expected noise on the media.

3. PROPOSED METHOD AND EXPERIMENTAL RESULTS

The proposed constraints sets for the fingerprinting requirements are
all convex sets. The sets corresponding to identification of individual
traitors, avoiding accusation of benign individuals, identification of
each colluder in all possible collision scenarios, imperceptibility of
fingerprint, and robustness to compression sets are all affine [7]. A
set of images that satisfies all these requirements simultaneously can
be found by the iterative algorithm of successive projections onto
convex sets(POCS) [8]. Given n convex sets {S;}i—; the POCS
method determines a point in their intersection by successive pro-
jections. If the intersection set is non-empty, the sequence { fx } 7=
generated by successive projections onto the sets converges to a point
in the intersection, where

fre1 = (Ps, (Ps, _y-Psy (f)-)), k=0, 1,.. ®)

where Pg, is the projection operator onto set S;, defined as
Ps, = arg minyes, ||y — |-

Figure 2 illustrates the constraints in a 2-colluder scenario where
for the purpose of illustration we consider the constraints on the indi-
vidual images (instead of collection together). x; represents an arbi-
trary initial image. There are two different projection paths, leading
to the two distinct fingerprinted images. The sets represented by
dashed lines are “robustness to collusion” sets and effective for both
projection sequences. The square shaped imperceptibility set is also
common to both fingerprinted image generation processes. The rest
of the sets have distinct counterparts for each projection sequence.
For example, avoiding false accusation sets are distinct and work in-
dependently from each other. Although, Fig. 2 gives an explanation
of the formation of distinct sequences in the fingerprinting process,
the dynamics between the images need further elaboration.

We examined the algorithm on 8 different 512x512 images from
the USC database. The number of agents is constrained to be 3, to
keep the number of constraints low. All sets except robustness to
compression set are employed. The values 7, and 7, are chosen to
be 2 and 0, respectively. The Sp and S; parameters of the noise
visibility texture model (see [6] for details) are chosen to be 20 and
2, respectively.

The Boat image, fingerprinted version and error image (differ-
ence between watermarked and original) are illustrated in Figures
3.4, 5 respectively. The difference image is scaled in order to make
it readily perceptible and shifted to a midgray average value so as
to accommodate negative values. The difference image shows the
adaptation of the embedded information onto the original image.
The PSNR values of three resulting images are 31.64 dB, 31.62 dB
and 32.19 dB.(PSNR; = N?225%/(3",(x0(i) — x;(7))?) where
x; is fingerprinted image and X, is the original image).

In this particular scenario we did not explicitly perform the de-
tection at the receiver. Instead we provide the correlation values at
the receiver (that form the input to the threshold based detector). Par-
ticularly we have set 7, = 2 and 7, = 0. The A parameter can be
set adaptively according to the expected attacks on the multimedia.
For instance, choosing A = 0.5 would set the detector threshold to a
correlation value of 1.5. This would allow the colluded copies some
noise margin in order to accommodate other types of attacks.

We next demonstrate that the correct keys identify the correct
images and possible colluded images. The only collusion strategy
considered is linear averaging attacks. The responses of each key
with the 3 different fingerprinted images and all possible combina-
tions of attacks are tabulated in Table 1 . Table 2 illustrates the
average statistics over the 8 different images. All entries correspond
to mean-corrected correlation values. We can see that the correla-
tion values observed for all individual and colluded copies allow for
the identification of colluders while avoiding accusations of innocent
individuals.

Due to the perceptual shaping for the same cover, the finger-
prints are dependent upon the cover and thereby upon each other.
This can be explicitly seen in the difference image in Fig. 5. Thus
the embedded watermark signals cannot implicitly be assumed to be
orthogonal to each other. However, by virtue of the constraints cor-
responding to benign users, in the set of fingerprinted images, each
image has a zero cross-correlation with other users’ pn-random fin-
gerprint sequences. This is more meaningful in typical oblivious
detection scenarios.

Fig. 3. Original image.
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Imagel | Image2 | Image3 | Average (1&2) | Average (1&3) | Average (2&3) | Average (1&2&3)
Key 1 5.989 0.004 0.004 2.997 2.997 0.004 1.999
Key 2 0.004 5.99 0.004 2.997 0.004 2.997 1.999
Key 3 0.003 0.003 5.993 0.0036 2.898 2.998 2.0

Table 1. Correlation values between the key controlled pn-sequences and associated fingerprinted images for boat image.

Imagel | Image2 | Image3 | Average (1&2) | Average (1&3) | Average (2&3) | Average (1&2&3)
Key 1 5.984 0.007 0.007 2.995 2.995 0.007 1.999
Key 2 0.007 5.983 0.007 2.995 0.007 2.995 1.999
Key 3 0.006 0.007 5.986 0.007 2.996 2.996 2.0

Table 2. Average of correlation values between the key controlled pn-sequences and associated fingerprinted images for 8 USC images.

Fig. 4. Fingerprinted image. PSNR is 31.64 dB

4. CONCLUSION

Fingerprinting requirements may be formulated as constraint sets
allowing a set theoretic estimation framework to be utilized to de-
termine fingerprinted images. Many common requirements such as
identification of traitors, false accusation probability, identification
in the presence of collusion and compression, can be formulated
as convex constraints allowing a solution to the problem using the
method of projections onto convex sets (POCS).

We described fingerprinting requirements as convex constraints
and achieved fingerprinted copies by applying set theoretical frame-
work. As a proof of concept we designed a 3-agent fingerprinted
copies of an image. One drawback of the framework is the rapidly in-
creasing number of constraints due to vast amount of possible com-
bination of coalitions. However, the technique can be appropriate for
scenarios where there are a small number of fingerprinted copies(e.g
Hollywood screeners).
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