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ABSTRACT 
 
In this paper, we describe the coupling of content adaptive 
watermark decoding and soft-decision forward error correc-
tion. We deduce three fundamental properties from adaptive 
watermarking methods switching between different embed-
ding strengths. It is shown how a weighting process at the 
decoder can be used to build up an overall soft processing 
watermarking. No pre-distortion has to be used, and hence, 
the image quality is not degraded. In this conjunction, even 
adaptation techniques can be used where it is computational 
infeasible to project a pre-distortion back onto the host im-
age. Experimental results indicate the improvement in bit 
error correction during watermark retrieval by a factor of 5. 
Without loss of security, performance or functionality our 
new technique can be integrated very easily into numerous 
watermarking applications. 
 
Index Terms — Digital watermarking, image segmentation, 
adaptive decoding, soft-decision forward error correction 
 

1. INTRODUCTION 
 
In recent years, several image watermarking methods have 
been proposed that adjust the embedding strength depend-
ing on the host signal [1]. More sophisticated approaches 
employ models of the human visual system to keep embed-
ding induced distortions below a just noticeable difference 
threshold [2]. They exploit the sensitivity of human’s eye to 
luminance masking, frequency masking as well as contrast 
masking. Parameters determined from the host signal (e.g., 
applying Watson’s perceptual metric) are used for weight-
ing the watermark. Other methods take advantage of the 
property that the human visual system is less sensitive to 
changes in textured regions than in smooth regions of an 
image. After a texture region separation, data can be embed-
ded with higher robustness against watermark attacks in 
stronger textured regions [3]. 

However, in content adaptive watermarking approaches 
during the extraction process the embedding strength pa-
rameters or the region separation map have to be known. If 
the system is blind, that means, if the used parameters are 
not transmitted besides the watermarked image and/or if the 
original image is unknown to the extractor, these parameters 

have to be determined from the watermarked image. Slight 
changes due to attacks can yield errors. Even if no attack 
has been applied discrepancies can occur [4], for example, 
because the embedding process itself has influence on the 
parameter calculation and the separation feature map. 

In the case of region separation-based adaptation the 
most often applied technique to circumvent discrepancies 
between both separation feature maps is to form a gap 
around the separation threshold. In other words, the used 
feature is pre-distorted to leave a margin. As a consequence 
the image quality is degraded. Furthermore, there are sepa-
ration approaches where it is computational infeasible or 
even impossible to project the pre-distortion back onto the 
host image. For example, the separation feature could have 
been calculated using higher order statistics from extensive 
data. In this case, errors are ignored or additionally have to 
be corrected by FEC (forward error correction). 

In this paper, we present a new solution to this problem. 
We integrate the commonly used hard region separation into 
an overall soft processing framework, as in Fig. 1 c). The 
FEC-decoder input signal is weighted using the knowledge 
of how close the feature is to the separation threshold.  
 

 
 
2. SOFT-DECODED ADAPTIVE WATERMARKING 

 
If there are discrepancies of the region separation during 
adaptively embedding and extracting the watermark m, as in 
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Fig. 1.  Overall hard processing a), hard region separation 
with soft bit decoding b), overall soft processing c). F is the 
separation feature, s is the host signal, m is the watermark.
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Fig. 2 b) and c), wrong parameters are used and bit errors 
can occur. For example, suppose that during the embedding 
process the watermarking strength 1 has been used for all 
black blocks and 2 has been used for the white blocks. 
Now, at the decoder, the nine mask differences in Fig. 2 c) 
would result in falsely used extraction strengths. Thus, the 
first goal must be to find a segmentation scheme that yields 
less decision errors. Furthermore, the separation feature map 
F must consist of real values, F . These soft values, the 
soft mask, can be used during soft-decision decoding for 
weighting the input signal s. 
 
2.1. DWT-based soft texture mask generation 
 
In [3], we applied texture segmentation in the DWT domain 
(discrete wavelet transform) for an image authentication 
scheme. Large DWT coefficients indicate image positions 
with strong texture, whereas small ones stand for homoge-
nous regions. Except for the LL4-subband, all coefficients of 
the fourth decomposition level were compared to a thresh-
old. Afterwards, the known morphologic operations closing 
and erosion were used to eliminate small gaps and to refine 
the separation. The binary masks were combined logically 
and used during embedding as well as extraction to select 
between two different watermarking strengths 1 and 2. 

But the described DWT segmentation approach was 
originally designed for a hard region separation (with pre-
distortion) and hard FEC-decoding. Now, in this paper we 
modify it to a soft version, whereas the texture threshold  
is subtracted rather than being used for binarization. The 
soft feature map is shown for a common photo in Fig. 2 d). 
The homogenous sky yields negative values, whereas for 
stronger textured regions the feature is positive. 
 
2.2. Three key properties towards soft decoding 
 
For watermark embedding we use QIM (quantization index 
modulation) in the DWT domain as described in [3]. But for 
the extraction site, we found out three interesting properties 
to be used for soft-decoding during nearest-neighbor quan-

tization. Thereby, 1 and 2 denote the two quantization 
lattices that each consist of sub-lattices marked with x and o 
accordingly. Although here we describe the embedding for 
the DWT domain, other domains, e.g., DCT (discrete cosine 
transform) or pixel domain could be used as well. 
 
2.2.1. Property I - Lattice point coverage 
In Fig. 3, the “natural” covers of 1 and 2 are shown for 
the case of lattice crossings due to false feature separation. 
The shaded areas indicate “natural positive crossings”. For 
example, suppose 1 has been used during embedding and 
the host signal was quantized to the highlighted point o. If 
afterwards the mask changes slightly as in Fig. 2 c), then 2 
would be used during extraction for this sample. In this 
case, the nearest-neighbor quantization would yield the cor-
rect bit decision as long as the sample keeps inside the 
shaded area, even if the separation feature has passed over 
the decision threshold. But if the point x right beside it has 
been used, it would be falsely decided to a point o in lattice 

2. In this case, a bit substitution error would occur. 
 

 
 
However, the possibility is highest that no error occurs dur-
ing a transition 1 2 in the case of an exactly three times 
larger quantization interval 2. Thereby, in at least 50 per-
cent of all cases there is no problem if a transition occurs if 
the distortion to the quantized signal is less than 1/2. 
 
2.2.2. Property II - Distortion Probability Density Function 
In [5], Vila-Forcén et al studied additive attacks against 
quantization-based watermarking. For attacks, such as lossy 
compression, noise adding or filtering, the distortion to the 

Fig. 3.  Covers of two QIM lattices ( 2 = 3 1). 
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Fig. 2.  Original image a). Hard embedding mask b), hard extraction mask after lossy JPEG compression with 
quality factor QF = 50 c), and soft extraction mask d) using the new soft texture segmentation (  = 2). 

c) d) b) a) 

IV - 454



quantized signal can be expected to be Gaussian distributed. 
Since the variance of this distribution is the same for both 
lattices 1 and 2, the following distortion probability den-
sity functions pdf (si) can be expected (see Fig. 4). Due to 
the quantization si = {-1 si +1: si }, i {1, 2} for one 
periodical quantization bin, whereas s1 = s / 1 and s2 = s / 2. 
 

 
 
Both probability density functions are drawn one upon the 
other to better visualize that there are spaces at the second 
lattice where it is unlikely that a signal sample is located. In 
other words, if in this case the feature is close to the deci-
sion threshold and the signal sample is somewhere in the 
space where pdf (si) is small, it is more likely that the sample 
was originally embedded using lattice 1. 
 
2.2.3. Property III – Certainty of Decision 
We define C as certainty of how close the input feature F is 
to the selected feature threshold . That means if the feature 
is close to the decision threshold, it is uncertain which QIM 
lattice has to be used. In this case the certainty is zero. If the 
feature is far from the threshold and it is oblivious which 
lattice was chosen during embedding, the certainty is high. 
Using this certainty we propose two weighting functions, f1 
and f2, for the input signals in 1 and 2. Thereby s1 and s2 
will be coupled to the soft key properties described above. 
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The weighting function f2 for lattice 2 depends on the 
absolute value of input signal s2 to implement Property II. 
The value O should be set to the ratio 1/ 2, e.g., O = 1/3. 
For one periodical quantization bin the weighting functions 

are visualized in Fig. 5. Considering the input signal both 
functions are opposed to each other. 
 

 
 
Using these weighting functions the input signal can be 
coupled to the feature decision in a soft processing manner.  
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It is clear that data embedded using the weaker embedding 
strength 1 is less robust to attacks or common signal proc-
essing than data embedded using 2 (see Fig. 6). Hence, we 
stretch the signal sw by the factor 2 / 1 at all mask positions 
where the separation feature is larger than the threshold . 
This weighting results in a stronger influence of the infor-
mation embedded using 2 during FEC-decoding. 
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2.3. Soft-decision decoding of the weighted signal 
 
After the weighing process, the FEC-decoder receives a 
stream containing information about the reliability of each 
received symbol. For example, the popular Viterbi-Decoder 
with soft-decision input used to decode convolutional codes 
can be employed to determine the embedded message m. By 
observing a sequence of symbols the decoder determines 
multiple paths of message states in a kind of state machine. 
Each of these states is valuated by a path metric, represent-
ing the reliability of each bit-decision. Afterwards, in a trace 
back process the maximum likelihood path survives. 

Our input signal weighting approach directly influences 
the decoder metric without the need for reprogramming the 
source code of the used FEC-decoder. Hence, this new pre-
weighting results in two advantages. First, the implemen-
tation effort is very low, and second, any soft-input FEC-
decoder can be used as well as simply exchanged. 
 

3. EXPERIMENTAL RESULTS 
 
The probability of mask transitions using the described 
DWT-based soft region segmentation is very low as can be 

Fig. 5.  Soft feature input signal weighting functions. 
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Fig. 4.  Probability density functions of the disturbed signal.
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seen in Fig. 6. Thus, we had to perform a huge number of 
simulations to assess the improvement in bit error correction 
during watermark retrieval. Therefore, in multiple runs we 
embedded 1024 bit of random data into each of a set of 32 
natural photos (512x512 pixels). 
 

 
 
To get an impression of how the image from Fig. 2 a) is 
changed due to the embedding process, in Fig. 7 the water-
marked image is displayed. 
 

 
 

 
 

We present results of our new solution for JPEG compres-
sions only. Other watermark attacks, such as filtering or 
noise-adding, have similar effect on the probability of mask 
transitions and hence, functionality of our approach. 

Fig. 8 shows that our soft-mask/soft-FEC solution at the 
decoder site outperforms watermarking using hard region 
separation combined with either soft or hard forward error 
correction. No extra coding is needed during watermark em-
bedding. Hence, the proposed technique can be integrated 
very easily into numerous watermarking applications with-
out loss of security, performance or functionality. 
 

4. CONCLUSION 
 
An integration of perceptually adaptive watermark decoding 
into soft-decision forward error correction was proposed. In 
prior watermarking approaches this adaptation process was 
always excluded from soft-decoding. But we proved that a 
soft-integration yields impressive improvements in bit error 
correction during watermark retrieval. No pre-distortion has 
to be used during watermark embedding, and hence, the 
image quality is not degraded. Thus, even adaptation tech-
niques can be used where it is computational infeasible to 
project a pre-distortion back onto the host image. 
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Fig. 7. Adaptively watermarked image a), 2 = 3 1,  
PSNR = 45.91 dB. Difference to original b) (scaled). 
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Fig. 8. BER for different values of JPEG quality factor 
after forward error correction. (settings as in Fig. 7). 
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Fig. 6.  Probability of occurrence of mask transitions (left) 
and extraction bit error rate depending on the used embed-

ding strength (right) after JPEG compression with QF.
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