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ABSTRACT
Privacy is of growing concern in today’s day and age. Pro-

tecting the privacy of health data is of paramount importance.

With the rapid advancement in imaging technology, analysis

of medical images is now one of the most dynamic fields of

study today. Image analysis is performed for a variety of pur-

poses, ranging from image enhancement to image segmenta-

tion. It can easily be seen that having access to more informa-

tion makes the analysis results more accurate. For example,

supervised classification based image segmentation requires

good and plentiful training data. We wish to utilize the train-

ing data at different locations to obtain more accurate image

segmentation while still protecting the privacy of individual

patients. Work in the field of secure multi-party computation

(SMC) in cryptography shows how to compute functions se-

curely and quantifies what it means to be secure. Applying

SMC protocols in image processing is a challenging problem.

This paper looks at how some of this work can be leveraged to

perform privacy-preserving image analysis and classification.

Index Terms— Communication system security, Image

Analysis, Distributed Algorithms, Cryptography

1. INTRODUCTION

In the new information age, while data is increasingly ubiq-

uitous, access to it needs to be significantly more restricted.

Privacy/security concerns severely restrict the sharing of data.

This is especially true in the case of medical data. HIPAA

rules [1] do not allow sharing of medical data without appro-

priate anonymization. The marriage of computers and medicine

has lead to large dividends. However, with many medical

studies, the foremost problem is the lack of real data. Real

data is scarce – getting the appropriate permissions, suitably

anonymizing it, etc. is a formidable task.

Consider the case of the development of a computer-aided

diagnostic (CAD) system. Such a system typically uses super-

vised classification based image segmentation. An example

of this is a CAD system that automatically segments out the

cancerous regions from an image. Such classifiers first need

to be trained using labeled data (i.e., data for which the classes

are already known). In the case of CAD systems such data is

called the ground truth. Clearly, increased ground truth im-

proves the accuracy of the classifier. However, such data is not

easy to access. Privacy/security concerns restrict the avail-

ability of the ground truth data. The paucity of real data often

forces the researcher to develop his classifier based on the

limited data available. Such a classifier is often not very ac-

curate. Interestingly, the kinds of information extracted from

the ground truth is mostly summary in nature and does not

automatically breach privacy in and of itself. It is mainly the

access to the original data that is the problem.

Thus, the problem that we wish to address is the follow-

ing: A biomedical informatics researcher wants to develop

a CAD system but has very limited ground truth available.

Due to this limitation the system is likely to be inaccurate

at the best. The researcher is in touch with several doctors

at medical schools, who have the ground truth data available

but are restricted from sharing it due to privacy/security con-

cerns. Is there some way in which the researcher can develop

the system without looking at the data or knowing what it is.

Furthermore, can this be done in a quantifiable way (exactly

what information is revealed), so that regulations can be met.

1.1. Model

Formally, we consider the following model: There are k par-

ties (i.e., doctors / labs) P1, . . . , Pk who each own or have

access to several medical images. Assume that party Pi has

ni images. Thus, the total number of images is n =
∑n

i=1 ni.

A researcher R (who could be one of the doctors/labs earlier)

wishes to use all of the images to formulate an accurate clas-

sification model. While the researcher can be trusted with the

model, he/she does not have access to the original image data.

2. RELATED WORK

Secure computation has a very rich history. Yao first pos-

tulated the two-party comparison problem (Yao’s Millionaire
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Protocol) and developed a provably secure solution[2]. Gol-

dreich et al.[3] generalized this to multi-party computation

and proved that there exists a secure solution for any func-

tionality. The approach used is as follows: the function F

to be computed is first represented as a combinatorial circuit,

and then the parties run a short protocol for every gate in the

circuit. Every participant gets random shares of the input and

output wires for every gate. This approach, though appeal-

ing in its generality and simplicity, means that the number of

rounds of the protocol grows with the size of the circuit. This

grows with the size of the input. This is highly inefficient for

large inputs or complicated circuits. The sheer size of images

(number of pixels) makes the general method completely un-

feasible for image processing. However this does prove that

secure solutions exist.

There has been some recent effort on applying secure com-

putation concepts to image analysis. [4] propose a technique

for secure image filtering based on securely computing the

scalar product. [5] propose a technique for blind vision –

securely using a face detection algorithm without revealing

either the images or the algorithm. There has also been sig-

nificant work in the privacy-preserving data mining area that

looks at how to perform data analysis securely over distributed

data. This work should be relevant since many of the con-

cerns and challenges (including the size of the data) are quite

the same. [6] provides a comprehensive survey.

3. ALGORITHM

To develop the classification model, the researcher needs to

first identify a set of features that would give a good classi-

fication. We assume that the researcher has identified such

features. The classifier then needs to be trained using these

features and the ground truth (i.e., the labeled data). After

training, the classifier can now be used to classify new data.

3.1. Training

Let us consider a few common statistical features that are typ-

ically extracted from the set of images. First is the mean,

following which the standard deviation is computed. These

can actually be computed using the secure sum algorithm in

Section 4.

First, all parties standardize their data. This ensures that

across all the images, similar regions fall whithin the same

range of intensity values. Each party, locally computes the

mean intensity level around each pixel for every image that

it owns. The mean around each pixel is computed using the

pre-selected window size of c × c. Next, all of these means

are added together to generate a local sum, sumi. This can be

done locally. Similarly the variable ni is initialized to the total

number of pixels of ground truth in all of the images. R then

invokes the secure sum algorithm (Section 4) to sum up all the

ni for all the i parties. This gives the total number of pixels

of ground truth n, with all of the parties. Similarly, R invokes

the secure sum algorithm to sum up the local sum, sumi for

all of the parties Pi. Finally, the global mean is computed by

dividing global sum (sum) by the total number of pixels (n).

The secure sum algorithm ensures that the researcher gets all

the information he wants without knowing the local values at

each party. The steps for computing the standard deviation

are quite similar. Algorithm 1 provides the complete details.

While here we only describe how to compute the mean

and the variance, these are crucial steps to computing any

standard image processing functionality. The computation of

many statistical features typically require sliding window op-

erations with computation of mean and variance. Securely

computing these is an indispensible part of image processing.

In the future we will explore how to compose specific tech-

niques using these and other secure sub-blocks.

4. SECURE SUM

What are some of the cryptographic tools that may help? One

building block frequently required is a way to securely calcu-

late the sum of values from individual sites. Assuming three

or more parties and no collusion, the following method ([7])

securely computes such a sum.

Assume that the value v =
∑k

i=1 vi to be computed is

known to lie in the range [0..n−1] where vi denotes the share

of party Pi.

The parties also randomly order themselves into a ring.

The ordering can be selected by one of the parties, or by a

third party. Without loss of generality, we assume that this

order is the canonical order P1, . . . , Pk. In general, any order

can be decided on. The protocol proceeds as follows:

P1 is designated as the master site. P1 generates a random

number r, uniformly chosen from [0..n−1]. P1 adds this to its

local value v1, and sends the sum r + v1 mod n to P2. Since

the value r is chosen uniformly from [0..n − 1], the number

r + v1 mod n is also distributed uniformly across this region,

so P2 learns nothing about the actual value of v1. For the

remaining sites i = 2..k − 1, the algorithm is as follows. Pi

receives

V = r +
i−1∑
j=1

vj mod n.

Since this value is uniformly distributed across [0..n− 1], Pi

learns nothing. Pi then computes

r +
i∑

j=1

vi mod n = (vi + V ) mod n

and passes it to Pi+1.

Pk performs the above step, and sends the result to P1.

P1, knowing r, can subtract r to get the actual result. Note

that P1 can also determine
∑k

i=2 vi by subtracting v1. This
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Algorithm 1 Secure computation of mean and standard devi-

ation
Require: k parties, P1, . . . , Pk owning images with ground

truth

Require: A researcher R who wishes to use the ground truth

for training classification models

Require: The parties/researcher agree on a window size, c×c
1: All parties standardize all of the data

2: {Compute the mean}
3: for each party Pi{Parallel Operations} do
4: for each owned image Ij do
5: nij ← number of pixels/voxels in the ground truth

6: for each pixel/voxel q in the ground truth do
7: Locally compute the mean μijq using the window

size, c

8: end for
9: Compute smij =

∑
q μijq

10: end for
11: Compute ni =

∑
j nij

12: Compute sumi =
∑

j smij

13: end for
14: At R: Invoke the secure sum algorithm (Section 4) to

compute n =
∑

i ni

15: At R: Invoke the secure sum algorithm (Section 4) to

compute sum =
∑

i sumi

16: At R: Compute the global mean, μ = sum/n
17: At R: Send the global mean μ to all the other parties

18: {Compute the standard deviation}
19: for each party Pi{Parallel Operations} do
20: for each owned image Ij do
21: for each pixel/voxel q in the ground truth, compute

svq = (vq − μ)2 (vq represents the intensity of

pixel/voxel q)

22: Compute sdsumij =
∑

q svq

23: end for
24: Compute sdsumi =

∑
j sdsumij

25: end for
26: At R: Invoke the secure sum algorithm (Section 4) to

compute sdsum =
∑

i sdsumi

27: At R: Compute the global standard deviation, σ =√
1

n−1 ∗ sdsum

is possible from the global result regardless of how it is com-
puted, so P1 has not learned anything from the computation.

This method faces an obvious problem if sites collude.

Sites Pi−1 and Pi+1 can compare the values they send/receive

to determine the exact value for vi. The method can be ex-

tended to work for an honest majority. Each site divides vi

into shares. The sum for each share is computed individu-

ally. However, the path used is permuted for each share, such

that no site has the same neighbor twice. To compute vi, the

neighbors of Pi from each iteration would have to collude.

Varying the number of shares varies the number of dishon-

est (colluding) parties required to violate security. Detailed

analysis of this method can be found in [8].

Another inherent problem due to the modular addition

is the fact that overflow leads to completely wrong results.

While we assume that the global sum v is within the range

[0 . . . n− 1], if this assumption is broken, then the final result

is wrong. However, it is quite easy to choose n to be large

enough such that the global sum is definitely within it.

5. SECURITY

To prove the security of the “integer sum” method in Sec-

tion 4, we need the framework of secure multiparty computa-

tion, which provides a solid theoretical underpinning for pri-

vacy. The key notion is to show that a protocol reveals nothing

except the results. This is done by showing how everything

seen during the protocol can be simulated from knowing the

input and the output of the protocol.

We assume the semi-honest model for security. A semi-

honest party follows the rules of the protocol using its correct

input, but is free to later use what it sees during execution of

the protocol to compromise security. This model fits our prob-

lem domain very well. The individual doctors or researcher

does not necessarily want to actually attack the system. What

they care more about is ensuring confidentiality and meeting

federal regulations and standards for privacy. The formal def-

inition of private two-party computation in the semi-honest

model can be found in [9].

Intuitively, a protocol is secure in the semi-honest model

if a group of parties which follow the protocol are unable to

learn anything that they could not in the ideal model (where

they simply give their inputs to a trusted third party which

computes the functionality). This leads to the notion of pri-

vacy by simulation. Thus, a computation is secure if given

only a particular party’s input and output, it is possible to

simulate his view of the entire protocol without knowing any

other party’s input or output. Since he cannot distinguish his

view of simulation (which does not depend on any data not

known to him) from his view of the protocol (which does,

generally depend on the inputs of the other parties), we claim

that he does not learn anything beyond what he should by par-

ticipating in the protocol. Thus, in a proof of security, we only

need to show the existence of a simulator for each party that

satisfies the above definitions.

This does not quite guarantee that private information is

protected. For example, if there are only two parties, the sum

of the private values automatically reveals the private value

of the other party. Similarly, even with more than two par-

ties, a party can always subtract its own value from the fi-

nal result to get the sum of the other values. This is inherent

from the function computed, and would be possible even if we

have a completely secure protocol using a trusted third party.

Thus, the key to the definition of privacy is that nothing is

learned beyond what is inherent in the result, i.e., the process
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of computing the function does not reveal anything. We now

intuitively present the security of the secure sum protocol. A

complete formal proof of security can be found in [10].

In order to prove the security of the protocol, it is suffi-

cient to show how to construct a simulator for each party. The

simulator for each party proceeds simply by executing the ac-

tual protocol. In order to show that the view of each party can

be simulated, we only need to simulate the messages received

by each party using only the local input and the final output.

The messages sent can be simulated by actually computing

them from the local input and the messages received during

the protocol.

P1’s view: At the end of the protocol, P0 receives r +∑k
i=1 vi mod n from Pk. Since, P1 knows r, and the fi-

nal result
∑k

i=1 vi mod n, it can easily compute the mes-

sage it receives. P2, . . . , Pk’s view: Site Pi (i = 2 . . . k)

receives V = r +
∑i−1

j=1 vj mod n. To simulate this, Pi sim-

ply chooses a random number ri from a uniform distribution

over 0..n− 1. Now,

Pr
[
V IEWProtocol

i = x
]

= Pr

⎡
⎣r +

i−1∑
j=1

vj mod n = x

⎤
⎦

= Pr

⎡
⎣r = x−

i−1∑
j=1

vj mod n

⎤
⎦

=
1
n

Since the simulator chooses each number in the range 0 to

n−1 equiprobably, this matches the probability of seeing that

number. Therefore, what each site sees is indistinguishable

from that simulated with a random number generator.

Note that P1 can also determine the sum of the other val-

ues (
∑k

i=1 vi) by subtracting v1. However, this is possible

from the global result regardless of how it is computed, so P1

does not learn anything from the computation.

6. COMPUTATION/COMMUNICATION ANALYSIS

The secure sum protocol is remarkably efficient. The only

extra computation required by the first party is the generation

of the random number, and the final subtraction. In terms

of communications, k rounds are required, 1 for each party.

For a collusion resistant protocol (if at least q parties have

to be malicious), the communication and computation cost is

further multiplied by q. Overall, most of the computation is

local. The secure sum algorithm is only invoked thrice. Thus,

the overhead due to privacy/security is minimal.

7. CONCLUSION

In this paper we have explored the possibility of using tools

from the field of secure computation to enable secure collabo-

ration – thus allowing us to create more accurate image anal-

ysis and classification. While the specific features considered

(mean and standard deviation) are quite basic, they demon-

strate the fact that secure collaboration is possible and can

significantly help in expanding the applicabilities of medical

studies. The basic algorithm can easily be applied to all ad-

ditive features (i.e., all features where the global value can be

expressed as a sum of local values). In the future, we plan to

significantly expand this suite of tools to enable computation

of many more features, and create a collaboration environ-

ment for the biomedical researcher.
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