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ABSTRACT
 
When linear discriminant analysis (LDA) is employed, the 
correct classification of a sample heavily depends on having an 
adequately large training set. This is often not possible in 
practical applications, such as person verification, where the lack 
of sufficient training samples causes improper estimation of a 
linear separation hyper-plane between the two classes. To 
overcome this shortcoming a novel algorithm that can handle the 
verification problem more efficiently than traditional LDA is 
presented. The dimensionality of the samples is reduced by 
breaking them down, thus creating subsets of smaller 
dimensionality feature vectors, and applying discriminant 
analysis on each subset. The resulting discriminant weight sets 
are themselves weighted under a normalization criterion, making 
the discriminant functions continuous in this sense. A series of 
simulations that formulate the face verification problem illustrate 
the cases for which our method outperforms traditional LDA and 
various statistical observations are made about the discriminant 
coefficients that are generated. 

Index Terms— discriminant analysis, face verification, small 
sample size problem 1

1. INTRODUCTION 

Linear discriminant analysis is an important statistical tool for 
recognition, verification, and in general classification 
applications. In many cases, however, and in particular when 
face data is used, there is insufficient data available so as to 
carry out the LDA process in a statistically proper manner. In 
face verification systems a test face is compared against a 
reference face and a decision is made whether the test face is 
identical to the reference face (meaning the test face is a client) 
or not (meaning the test face is an impostor). In this type of 
problems, Fisher’s linear discriminant is not expected to be able 
to discriminate well between face pattern distributions that are in 
many cases highly nonlinear (i.e. they cannot be separated 
linearly), unless a sufficiently large training set is available. 
More specifically, in face recognition or verification systems 
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LDA-based approaches often suffer from the “small sample size”
(SSS) problem where the dimensionality of the samples is larger 
than the number of training samples [1]. In fact, when this 
problem becomes severe, traditional LDA actually degrades the 
classification performance and shows poor generalization ability. 

In recent years, an increasing interest has developed in the 
research community in order to improve LDA-based methods 
and provide solutions for the SSS problem. The traditional 
solution to this problem is to apply LDA in a lower-dimensional 
PCA subspace, so as to discard the null space (i.e., the subspace 
defined by the eigenvectors that correspond to zero eigenvalues) 
of the within-class scatter matrix of the training data set [2]. 
However, it has been shown [3] that significant discriminant 
information is contained in the discarded space and alternative 
solutions have been sought. Specifically, in [4] a direct-LDA 
algorithm is presented that discards the null space of the 
between-class scatter matrix, which is claimed to contain no 
useful information, rather than discard the null space of the 
within-class scatter matrix. In [5], a linear feature extraction 
method which is capable of deriving discriminatory information 
of the LDA criterion in singular cases is used. This is a two-
stage method, where PCA is first used to reduce the 
dimensionality of the original space and then a Fisher-based 
linear algorithm, called Optimal Fisher Linear Discriminant, 
finds the best linear discriminant features on the PCA subspace. 
The authors in [1] form a mixture of LDA models that can be 
used to address the high nonlinearity in face pattern 
distributions, a problem that is commonly encountered in 
complex face recognition tasks. They present a machine-learning 
technique that is able to boost an ensemble of weak learners 
slightly better than random guessing to a more accurate learner. 
One of the major disadvantages of using the Fisher criterion is 
that the number of its discriminating vectors capable to be found 
is equal to the number of classes minus one. Recently, it was 
shown [6] that alternative LDA schemes that give more than one 
discriminative dimensions, in a two class problem, have better 
classification performance than those that give one projection. 

This paper presents and evaluates an algorithm that aims to 
improve the performance of LDA-based approaches under the 
verification, or two-class, problem. The dimensionality of the 
samples is reduced by breaking them down and creating subsets 
of feature vectors with small dimensionality, and applying 
discriminant analysis on each subset. The resulting discriminant 
weights are normalized to provide the overall solution. This 
process gives direct improvements to the two aforementioned 
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problems as the non-linearity between the data pattern 
distributions is now restricted while the reduced dimensionality 
also helps mend the SSS problem. The performance of this 
method is studied using randomly generated data for various 
two-class problems that fall under various cases of the SSS 
problem.

2. LOCALLY LINEAR DISCRIMINANT MODELS 

Let  and  denote the sample mean of the class of 

similarity vectors  that corresponds to client claims relating to 
the reference person 

Cr ,m Ir ,m

tc
r  (intra-class mean) and those 

corresponding to impostor claims relating to person r  (inter-
class mean), respectively. In addition, let  and  be the 
corresponding numbers of similarity vectors that belong to these 
two classes and  be their sum, i.e., the total number of 
similarity vectors. Let  and  be the within-class and 
between-class scatter matrices, respectively [7]. Suppose that we 
would like to transform linearly the similarity vectors:  
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The most known and plausible criterion is to find a projection, 
i.e. choose , that maximizes the ratio of the between-class 
scatter against the within-class scatter (Fisher’s criterion): 
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For the two-class problem, as is the case of face verification, 
Fisher’s linear discriminant provides the vector that maximizes 
(2) and is given by: 
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When the number of client similarity vectors  is smaller 

than the dimensionality L  of each vector  then traditional 
LDA shows poor generalization ability and degrades the 
classification performance since the SSS problem appears. 
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The novelty of our approach is that in order to give remedy 
to the SSS problem, each similarity vector  with 

dimensionality 

'
tc

L  is broken down to P  smaller dimensionality 
vectors, , each one of length Piit ,1,'

,c , where 

, thus uniformly forming 1C P  subsets. As a result, 

P  separate Fisher linear discriminant processes are carried out 
and each of the weight vectors produced is normalized, so that 
the within group variance equals to one, by applying:  

          2
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where  is the index of dimensionality vector 

 corresponding to a subset of similarity vector coordinates. 

This normalization step enables the proper merging of all weight 
vectors to a single column weight vector, , as such: 
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3. EVALUATION STUDY OF ALGORITHM 

The efficiency of the proposed discriminant solution is evaluated 
using simulated data in order to deduce experimental evidence 
on the performance of WPLDA. In order to provide relevant 
background on the expected performance of the proposed 
WPLDA algorithm in face verification, simulations that tackle 
the 2-class problem are carried out. We intent to investigate the 
cases where one can expect the WPLDA algorithm to 
outperform the traditional LDA algorithm, with respect to the 
size of the impostor and client classes. For each verification 
experiment, two classes of matching vectors, one that 
corresponds to the clients and the other to the impostors, are 
created. Each class contains  sample vectors of 
dimensionality . Each of these sample vectors contains entries 
drawn from a normal (Gaussian) distribution. The  random 
entries to each sample vector of class , which is the 
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where  and .  is the 

expected mean value and  the expected standard deviation 

for the 
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i th random entry of the j th class and  is a 
random number, chosen from a normal distribution with zero 
mean and unit variance. The scalars 

ir

 and  affect the 
uniformity among the vectors of each class. 

The dimensionality of the sample vectors is set to 
64L and each class contains  sample vectors. Let 2000N

I  be the impostor class and  and  be two client classes. 
Let the random entries to each sample vector of the impostor 
class 

1C 2C

I  and the client classes  and  be generated based on 
the following normal distributions, respectively:   

1C 2C

.641,525,5100: irrx iiiiiI
    (7) 

.641,535,587: irrx iiiii1C
   (8)

.641,535,585: irrx iiiii2C
     (9) 

It is clear that the mean of the random entries of  is 

expected to deviate more, w.r.t. the mean of the entries of ,
from the mean of the entries of 

2C

1C
I .

For most feature-based verification methods it is expected 
that certain matching features should provide more discriminant 
information than others. For example, for the case of face 
verification, a feature related to the eye is expected to be more 
useful than a feature related to a part of the forehead. In order to 
simulate a similar situation, we create a subset of 
characteristics (out of the total ), that is expected to be more 
discriminant than the remaining characteristics. We name this set 
of  characteristics as ‘most discriminant coefficients’. Let a 

client class  be created, such that the entries at the 

characteristics are taken from the  client class (since the 

entries from are more separated from the entries in 
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Fig.  1. EER when varying the number of client sample vectors 
selected from class  and for 10 impostor training vectors 
selected from class 
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Fig.  2. EER when varying the number of client sample vectors 
selected from class  and for 100 impostor training vectors 
selected from class 
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the entries of  are) and the rest of the entries from the 

class. For this first set of experiments we let .
1C 1C

5BL
The data that were created are used to compare the 
discrimination ability of traditional LDA and the proposed 
WPLDA for various numbers of training sample vectors for the 
impostor and client class. For each 2-class problem that is 
formulated, one training and one test set are created. The 
training set of LDA and WPLDA is formed based on the random 
selection out of the complete set of  sample vectors of each 
class. The remaining sample vectors of each class, obtained by 
excluding the training set of LDA and WPLDA, form the test set 
that is used to evaluate the classification performance. 

N

In order to approximate the ideal linear discriminant solution, 
a third method that will be referred to as Ideal LDA (ILDA) will 
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Fig.  3. EER when varying the number of client sample vectors 
selected from class  and for 1000 impostor training vectors 
selected from class 
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always apply the traditional LDA algorithm making use of the 
complete sets of  client sample vectors and  impostor 
sample vectors, during the training phase. The test set, where the 
performance of ILDA will be evaluated on, is identical to the 
test set of LDA and WPLDA. Thus, the test set is always 
included in the training set of ILDA, so as to best approximate 
the ideal linear discriminant solution and provide ground-truth 
results. In addition, and again for comparison purposes, the 
classification performance of a fourth method will be 
considered, where this method simply computes the mean of the 
sample vectors (MSV) and produces a non-weighted result 
which can be used to indicate how difficult the 2-class 
classification problem is. 

N N

In order to evaluate the performance of the four 
aforementioned methods the equal error rate (EER) is found over 
20 independent runs, for more accurate results, and the average 
value is recorded. The simulation data are used in various 
discriminant processes that aim to separate out the client and 
impostor classes. The 2-class problem that is studied next uses 
data from I  and . Fig. 1-3 show the EER when the number of 
client sample vectors varies from 2 to 100.

3C

Fig. 1 shows the EER results when the number of impostor 
sample vectors is 10. For the LDA algorithm, the SSS is 
expected to have the most severe effects on the EER when the 
client class has less than 65)1(L  samples. In theory, in 
this case neither the client class nor the impostor class can be 
properly modelled by traditional LDA and, as a result, an 
appropriate separation between the two classes cannot be found. 
On the other hand, WPLDA is not affected by the SSS problem 
as can be seen in Fig. 1. The small variations in the EER of 
ILDA indicate the amount of randomness in our results since 
only the y-axis showing EER is significant for the ILDA results. 
Fig. 2 and 3 show the EER rates for 100 and 1000 impostor 
sample vectors respectively. It is clearly seen in these figures 
that, unless a relatively large number of client and impostor 
sample vectors are available, WPLDA outperforms LDA. 
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Fig. 2 shows that, when 100 impostor and 83 client sample 
vectors are available, the performance of LDA becomes better 
than that of MSV. Fig. 3 shows that when the number of 
impostor sample vectors becomes 1000, 20 client sample vectors 
are required for LDA to outperform WPLDA. For most current 
biometric databases, having 20, or more, client samples per 
person is quite uncommon.

The second set of experiments using simulated data involves 
investigating the statistical behaviour of the discriminant 
coefficients of the LDA and WPLDA processes with reference 
to ILDA. Moreover, EER rates are reported for different 
numbers of ‘most discriminant coefficients’ contained in each 
class, that is, for various values of . In order to determine 
how efficient each discriminant method is in recognizing the 
importance of the most discriminant coefficients, a separation 
criterion between the most discriminant and the remaining 
coefficients is defined as: 

BL

RB

RB

ss
mm

H ,    (10) 

where  and  are scalars representing the average mean 
and the average standard deviation of the set of most 
discriminant coefficients and  and  those of the 
remaining coefficients. If  the separation criterion is 
satisfied since the values of the most discriminant coefficients 
will vary significantly from those of the remaining coefficients. 

Bm Bs

Rm Rs
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This set of simulations is modelled under the SSS problem, 
where the client class has less sample vectors than the 
dimensionality of the similarity vectors. Both the Brussels
protocol, described in [7], and the Lausanne [8] protocol, which 
are widely used for verification purposes, specify for the client 
class to avail 6 training samples during the training stage. 
Therefore, we randomly select 6 sample vectors from the 

client class and 1000 sample vectors from the 
3C

I  impostor class 
to train LDA and WPLDA. The coefficients of ILDA are once 
again generated by a training set of 2000 client and 2000 
impostor sample vectors. To observe the statistical behaviour of 
the discriminant coefficients, 1000 independent runs are carried 
out. The entries at the position of the  elements are expected 
to have a larger distance from the corresponding element entries 
of class 

BL

I , than the rest. Thus, the discriminant process should 
give larger weights for the element entries at these  specific 
positions, since they are expected to be the most useful in 
producing a meaningful separation between the impostor and the 
client class. 

BL

Table 1 provides statistical information about the calculation 
of the 64 discriminant coefficients, , throughout 

the 1000 independent runs, by ILDA, LDA and WPLDA 
respectively. The three discriminant methods processed the ,

for various values of , and 

641,' iiw

3C

BL I  training data. The H  values in 
Table 1 show that WPLDA provides a better separation for the 
‘most discriminant coefficients’ from the remaining coefficients, 
in terms of assigning largest weights, than LDA does. In 
addition, WPLDA provides the EER rate that is closest to the 

corresponding ILDA rate. 

TABLE I
MEAN EER AND MEAN H

BL EER          EER            EER              H H H

ILDA LDA WPLDA ILDA LDA WPLDA

0 0.0961 0.2578 0.0989 - - -

5 0.0300 0.1142 0.0652 3.7908 0.4580 4.5505

15 0.0255 0.1032 0.0318 1.0739 0.1321 4.7119

25 0.0247 0.1008 0.0272 0.3986 0.0489 1.6225

30 0.0246 0.1014 0.0267 0.1532 0.0252 0.1703
Mean EER and H of 1000 runs for 6 clients and 1000 impostors. 

4. CONCLUSION 

A novel methodology is proposed in this paper that provides 
general solutions for LDA-based algorithms that encounter 
problems relating to high nonlinearity between the data pattern 
distributions, small training sets and to the SSS problem in 
particular. This methodology was evaluated using a set of 
simulations that gave indications on when the proposed 
weighted piecewise linear discriminant analysis algorithm 
outperforms traditional LDA. It is anticipated that the 
performance of other LDA variants may be enhanced by 
utilizing processes that stem from this framework.
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