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ABSTRACT

Gabor filters are biologically motivated convolution kernels that have
been widely used in the field of computer vision and, specially, in
face recognition during the last decade. This paper proposes a sta-
tistical model of Gabor coefficients extracted from face images us-
ing generalized Gaussian distributions (GGD’s). By measuring the
Kullback-Leibler distance (KLD) between the pdf of the GGD and
the relative frequency of the coefficients, we conclude that GGD’s
provide an accurate modeling. The underlying statistics allow us to
reduce the required amount of data to be stored (i.e. data compres-
sion) via Lloyd-Max quantization. Verification experiments on the
XM2VTS database show that performance does not drop when, in-
stead of the original data, we use quantized coefficients.

Index Terms— Face Recognition, Generalized Gaussian Distri-
bution, Gabor filters, Kullback-Leibler distance, Lloyd-Max quanti-
zation, data compression, XM2VTS database

1. INTRODUCTION

Gabor filters are biologically motivated convolution kernels that have
been widely used in face recognition during the last decade (see [1]
for a recent survey). Basically, Gabor-based approaches fall into one
of the following categories: a) Extraction of Gabor responses from
a set of key points in face images and b) Convolution of the whole
image with a set of Gabor filters. As highlighted in [1], one of the
main drawbacks of these approaches (specially the ones included in
category b) is the huge amount of memory that is needed to store a
Gabor-based representation of the image. Regarding feature compar-
ison, similarity between Gabor responses has been usually measured
by means of normalized dot products (or related measures), but there
is no theoretical evidence supporting this choice.

On the other hand, experiments have shown that generalized
Gaussian distributions (GGD’s) provide a good pdf approximation
for the distribution of coefficients produced by several types of wavelet
transforms [7, 8, 9]. To the best of our knowledge, despite the large
number of papers using Gabor filters for face recognition, no statis-
tical model has been proposed for Gabor coefficients. In this paper,
we suggest that GGD’s could provide a suitable modeling, and em-
pirically validate this hypothesis using the Kullback-Leibler distance
(KLD). The underlying statistics allow us to perform data compres-
sion via Lloyd-Max quantization, and open new possibilities in terms
of selecting an optimal measure between Gabor reponses from a the-
oretical point of view.

The paper is organized as follows: Section 2 describes the base-
line face recognition system used in this paper. Section 3 introduces

the formulation of generalized Gaussian distributions (GGD’s), as
well as the modeling of Gabor coefficients using GGD’s. Coeffi-
cient quantization by means of Lloyd-Max algorithm is explained
in Section 4. The impact of coefficient quantization on verification
performance is reported in Section 5 with experimental results on
the XM2VTS database [3]. Finally, conclusions and future research
lines are drawn in Section 6.

2. THE FACE RECOGNITION SYSTEM

A set of 40 Gabor filters {ψm}m=1,2,...,40 with the same configu-
ration as in [2] (5 spatial frequencies and 8 orientations), is used to
extract textural information from face images. These filters are bio-
logically motivated convolution kernels in the shape of plane waves
restricted by a Gaussian envelope [5], as it is shown next:
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where �km contains information about spatial frequency and ori-
entation, and the same standard deviation s = 2π is used in both
directions for the Gaussian envelope. Figure 1 shows the real part of
the 40 Gabor filters used in this paper.
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Fig. 1. Real part of the set of 40 (8 orientations × 5 scales) Gabor
filters used in this paper.

The baseline face recognition system used in this paper relies
upon extraction of Gabor responses at each of the nodes from a
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nx × ny rectangular grid (Figure 2). All faces were geometrically
normalized -so that eyes and mouth are in fixed positions-, cropped
to a standard size of 150x116 pixels and photometrically corrected
by means of histogram equalization and local mean removal. The
region surrounding each grid-node in the image is encoded by the
convolution of the image patch with these filters, and the set of re-
sponses is called a jet, J . Therefore, a jet is a vector with 40 com-
plex coefficients, and it provides information about a specific region
of the image. At node �pi = [xi, yi]

T and for each Gabor filter ψm,
m = 1, 2 . . . , 40, we get the following Gabor coefficient:

gm(�pi) =
∑∑

I(x, y)ψm (xi − x, yi − y) (2)

where I(x, y) represents the photometrically normalized image patch.
Hence, the complete feature vector (jet) extracted at �pi is given by
J (�pi) = [g1(�pi), g2(�pi), . . . , g40(�pi)]. For a given a face with
n = nx × ny grid-nodes {�p1, �p2, . . . , �pn}, we get n Gabor jets
{J (�p1),J (�p2), . . . ,J (�pn)}.

3. MODELING GABOR COEFFICIENTSWITH
GENERALIZED GAUSSIAN DISTRIBUTIONS (GGD’S)

Generalized Gaussian distributions have been successfully used to
model coefficients produced by various types of wavelet transforms
[7, 8, 9]. The pdf of a GGD is given by the following expression:

fx(x) = Ae−|βx|c (3)

Both A and β can be expressed as a function of the so-called
shaping factor c and the standard deviation σ

β =
1

σ

(
Γ(3/c)

Γ(1/c)

)1/2

A =
βc

2Γ(1/c)

where Γ(.) is the complete gamma function. The shaping factor
c is inversely proportional to the sharpness of the pdf. Therefore,
this distribution is completely specified by two parameters, c and σ.
Note that the Gaussian and Laplacian distributions are just special
cases of this generalized pdf, given by c = 2 and c = 1 respectively.

In this paper, we attempt to model both real and imaginary parts
of each Gabor coefficient using GGD’s whose parameters have been
obtained using the Maximum-Likelihood (ML) estimator. From a

Fig. 2. Rectangular grid over the preprocessed (geometrically and
photometrically normalized) face image. At each node, a Gabor jet
with 40 coefficients is computed and stored.

set of face images {F1,F2, . . . ,FT }, we extract Gabor jets as in-
troduced in Section 2. Regardless of the node from which they have
been computed, the coefficients corresponding to a given Gabor filter
ψm (real and imaginary parts separately) are stored together forming
two sets of coefficients Sreal

m and Simag
m . Now, our goal is to assess

whether these distributions can be modeled using GGD’s.
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Fig. 3. Histogram for coefficient g34 along with the fitted GGD.

Figure 3 shows the histogram for the real part of coefficient g34
along with the fitted GGD. Although it seems clear from this figure
that the GGD accurately models the coefficient distribution (simi-
lar plots were obtained for the remaining coefficients), we used the
Kullback-Leibler distance (KLD) [12] to assess the goodness of the
fits. The Kullback-Leibler distance between two discrete distribu-
tions with probability functions P andQ, is given byKLD(P, Q) =∑K

i=1 P (i)logP (i)
Q(i)

≥ 0, whereK stands for the number of intervals
in which the sample space is divided. Figure 4 (left) plots, for both
real and imaginary parts of each Gabor coefficient, the KLD between
the relative frequency of the coefficient and the fitted GGD. Since
the obtained distances are small, it seems reasonable to conclude
that generalized Gaussians are able to model Gabor coefficients ac-
curately. Other tests, such as the χ2 test, have been previously used
to assess the quality of the fit (for instance in [11]). Applying the χ2

test to our data leads to the same conclusion -see Figure 4 right-.
Figure 5 presents the shaping factors c and the σ parameters

of the 80 GGD’s modeling both real and imaginary parts of Gabor
coefficients. From this figure, we can conclude:

• All the GGD’s have a shaping factor c that is well below 2,
and hence we can conclude that the distribution of each Gabor
coefficient is not well modeled by a Gaussian. This fact is
also confirmed with normal probability plots (statistics tool
to assess whether or not a data set is approximately normally
distributed), which are not displayed due to space limitations.
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Fig. 4. KLD and χ2 distances between the fitted GGD and the data
for both real and imaginary parts of each Gabor coefficient.
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Fig. 5. Obtained c and σ GGD parameters for both real and imagi-
nary parts of each Gabor coefficient.

• The real and imaginary parts of a given coefficient have sim-
ilar c parameters. The same conclusion can be drawn for σ.

• There exists a pseudo-periodic behavior in the GGD parame-
ters. If we examine Figure 6, which replots the shaping fac-
tors and the standard deviations for the real part of each coef-
ficient grouped by scale subbands, it seems clear that a similar
pattern emerges on each of these subbands. Further research
is needed in order to provide theoretical reasons supporting
this behavior.

• In an analogous way, Figure 7 replots c and σ for the real part
of the coefficients grouped by orientation subbands. It can
be realized that the GGD parameters increase with scale, i.e.
as long as spatial frequency decreases. Taking into account
the variation of Gabor filters with scale for a fixed orientation
(any column from Figure 1), it is clear that a filter from the
first row (1st scale, highest frequency) captures texture infor-
mation from a smaller neighborhood than a filter with a lower
frequency does. Hence, we can assume that the information
encoded in a high frequency coefficient is more correlated
than the one captured by a low frequency filter and there-
fore, it is reasonable to conclude that the variance (and σ)
should be smaller for high frequency coefficients. Moreover,
the increase of c with scale means that the coefficient distri-
butions are becoming “more Gaussian” and this fact could be
explained by the same hypothesis and the central limit the-
orem: as long as frequency decreases, the pixels in the im-
age patch that are taken into account for the convolution are
less correlated and, applying the central limit theorem, the
result of this convolution should approach a normal distribu-
tion. However, more experiments are needed to assess the
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Fig. 6. Shaping factors c and standard deviations σ for the real part
of Gabor coefficients grouped by scale subbands.
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Fig. 7. Shaping factors c and standard deviations σ for the real part
of Gabor coefficients grouped by orientation subbands.

validity of this hypothesis.

4. COEFFICIENT QUANTIZATION BY MEANS OF
LLOYD-MAX ALGORITHM

Now that we have a way to statistically model Gabor coefficients, a
wide range of applications arises. As highlighted in [1], one of the
drawbacks of Gabor-based approaches is the large amount of data
that must be stored. Hence, we can think of reducing storage via
coefficient quantization. To achieve this goal, we used the Lloyd-
Max quantizer (the one with minimum mean squared error (MSE)
for a given number NL of representative levels).

In our case, a face is represented by n jets, each one comprising
40 complex coefficients. Assuming that each coefficient is repre-
sented by 16 bytes (8 for the real part + 8 for the imaginary part), a
total of 16×40×n bytes are needed per face. After GGDmodelling
and data quantization, instead of storing the original coefficient, we
only need to keep two indices (one for the real part and another for
the imaginary part) per coefficient (2 × 40 × n indices per face).
Hence, using NL quantization levels, we can represent a coefficient
with 2 × �log2 (NL)� bits. In [6], it was shown that a given im-
age can be reconstructed using the Gabor responses extracted from
a sparse graph (like the rectangular grid shown in Figure 2). Figure
8 presents the reconstruction of the face in Figure 2 using different
quantization levels, along with the reconstruction using the original
coefficients. As can be seen, the reconstructed face with only just
4 quantization levels is already quite accurate, and the differences
in quality between NL = 8, . . . , 512 levels and the original coeffi-
cients are not easily noticeable from a perceptual point of view.

5. FACE VERIFICATION ON THE XM2VTS DATABASE

In order to assess the impact of data compression on system perfor-
mance, we conducted verification experiments using the XM2VTS
database on configuration I of the Lausanne protocol [4]. The XM2VTS
database contains synchronized image and speech data recorded on
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295 subjects (200 clients, 25 evaluation impostors, and 70 test im-
postors) during four sessions taken at one month intervals. The
database was divided into three sets: a training set, an evaluation
set, and a test set. The training set was used to build client models,
while the evaluation set was used to estimate thresholds that discrim-
inate between client and impostor attempts. These thresholds are
chosen so that False Acceptance Rate (FAR) equals False Rejection
Rate (FRR) on the evaluation set. Finally, using the obtained thresh-
olds, we measure the FAR and FRR on the separate test set. Table 1
presents FAR, FRR and Total Error Rate (TER=FAR+FRR) over the
test set varying the number of quantization levels, along with the per-
formance using the original coefficients. In [10], the authors adapt
statistical tests to compute confidence intervals around Half Total Er-
ror Rates (HTER = TER/2) measures, and to assess whether there
exist statistically significant differences between two approaches or
not. Using this analysis, we confirmed that performance was signifi-
cantly worse only for NL = 2 and NL = 4 quantization levels. For
the remaining ones, the performance was even better than that with
original coefficients, although we can not conclude that significant
improvements were achieved. In any case, these results suggest that
noise reduction may be achieved via coefficient quantization.

6. CONCLUSIONS AND FURTHER RESEARCH

This paper has shown that Gabor coefficients extracted from face
images can be accurately modeled using generalized Gaussian dis-
tributions. This finding opens a wide range of possibilities. As a
first attempt, we took advantage of the underlying statistics to re-
duce data storage via Lloyd-Max quantization. No degradation was
observed even with severe compression using 8 quantization levels.
Further research is needed to investigate the pseudo-periodic behav-
ior of GGD parameters described in Section 3. Moreover, we have
demonstrated that the distributions of Gabor coefficients are far from
being Gaussian, as long as the obtained shaping factors c are well be-
low 2 for all coefficients.

Gabor-based face recognition systems have used distances for
jet comparison that are not supported by theoretical evidence (co-
sine distance, as in [2], is one of the most accepted). We think that,
based on the GGD modeling of Gabor coefficients, optimal ways to
compare jets (from a theoretical point of view) could be obtained,
and we will focus our efforts in this direction.
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