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ABSTRACT 

 
We present an algorithm for 3D face deformation and modeling 
using range data captured by a 3D scanner. Using only three 
facial feature points extracted from the range images and a 3D 
generic face model, the algorithm first aligns the 3D model to 
the entire range data of a given subject’s face. Then each 
aligned triangle of the mesh model, with three vertices, is 
treated as a surface plane which is then fitted to the 
corresponding interior 3D range data, using least squares 
plane fitting. Via triangular vertices subdivisions, a higher 
resolution model is generated from the coordinates of the 
aligned and fitted model. Finally the model and its triangular 
surfaces are fitted once again resulting in a smoother mesh 
model that resembles and captures the surface characteristic of 
the face. Application of the final deformed model in 3D face 
recognition, using a publicly available database, shows 
promising results. 
 
Index Terms— 3D face modeling, face recognition. 
 

1. INTRODUCTION 

3D range data is rich yet making full use of its high resolution 
for face recognition is very challenging. It is difficult to extract 
numerously reliable facial features in 3D. As a result, it 
becomes more challenging and computationally expensive to 
accurately match two sets of 3D data (e.g., matching a subject’s 
probe data and the gallery’s). Our objective in this research is to 
represent the 3D data of a given subject by a deformed 3D mesh 
model using a minimum number of extracted features. The 
deformation processes of the model essentially capture the 
surface characteristics of the data and represent the face with a 
massively reduced amount of data points, i.e., the mesh model’s 
vertices.  
 
    We briefly review algorithms in the literature, specifically 
targeting those relevant to our approach. We can broadly 
classify 3D face modeling for recognition into three categories. 
Namely, 3D matching, representative domain, and model based 
approaches.  A matching method, known as Iteratively Closest 
Point (ICP) approach, is becoming popular and is often used as 
a necessary step in aligning or matching the datasets of two 
subjects [1,2]. ICP is based on the search of pairs of nearest 
points in the two datasets and estimation of the rigid 
transformation that aligns them. Then the rigid transformation is 
applied to the points of one set and the procedure is iterated 
until convergence. Hausdorff distance is another matching 
approach which is often used in conjunction with ICP [3,4]. 

Hausdorff distance attempts to match two datasets based on 
subset points from the datasets. The problems with these two 
approaches are expensive computations and sometimes fail to 
give accurate results. The main reason for using ICP or 
Hausdorff is not having direct correspondences between the two 
compared datasets. In our work, the two compared datasets 
have direct feature correspondences, which eliminates the need 
for the above alignment/matching algorithms. Other researchers 
attempted to represent the 3D data in a different domain and 
made recognition comparison in the representative domain. 
Examples of those are 3D PCA [13], shape index [2], point 
signature [11], spine image [10], and local shap map [12]. 
Model based approaches use a priori 3D face mesh model and 
morph it to a given face. In this regard, our system is considered 
a model based approach. A famous model based approach is 
that developed by Vetter et al. [14]. [14] developed a system to 
create 3D face models from a single image. However, their 
system initially requires 200 scanned face models and uses 
initial manual intervention to create the 3D models. [15] adapts 
a generic face model to the facial features extracted from both 
registered range and color images. The deformation iteratively 
moves the vertices of the mesh model using vertices 
displacement propagation. In our previous research [16], we 
deformed a generic model to range data obtained from two 
frontal and one profile view stereo images which required 
internally and externally calibrated cameras. In this paper, our 
method is similar to the algorithm by Chenghua et al. in mesh 
subdivisions [17], but differs in many ways as follows: (a) we 
use a generic face mesh  model and [17] uses a mesh grid 
model, (b) we deform the aligned model’s mesh triangles 
coordinate to the data and [17] simply align the grid mesh 
coordinates to the range data then copy the z coordinate at each 
x and y coordinates, hence in their way the pose of the z 
coordinate pose is not considered, (c) in our system, because we 
have labeled feature vertices, our method establishes direct 
correspondences with other models in the database, hence direct 
comparison is achieved in recognition, while [17] method has 
no correspondences for features and would require aligning all 
the tip of the nose of all models in the database to be at the 
origin of the 3D coordinate system. Their approach would 
require optimization for alignment and matching before 
recognition.  
 
    In our algorithm, we bypass the alignment of ICP and the 
matching of Hausdorff with their costly computations, and 
present an algorithm that deforms a predefined and labeled-
vertices of a generic mesh model to a given subject’s range 
image. Our approach for initially aligning the 3D model to the 
range data only requires the extraction of three salient facial 
features, namely; the tip of the nose and the two inner corners 
of the eyes. These features are the most easily extracted from 
3D facial range images. A 3D model alignment and deformation 
are then used to fit the model to the range data. The end result is 
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a person specific deformed face model with vertices coordinates 
which are in correspondence with the other deformed models’ 
vertices. Hence, direct alignment and recognition comparison 
can be easily achieved. 
 
    This paper is organized as follows: Section 2 explains the 
preprocessing and filtering of the range images along with the 
3D facial features extraction algorithm. Section 3 introduces our 
3D generic mesh model, its alignment and its deformation with 
experimental results. Section 4 presents results of applying our 
final 3D deformed models in 3D face recognition.  Conclusions 
and future work are given in section 5. 

2. DATA PREPROCESSING AND 3D FACIAL 
FEATURES EXTRACTION 

This section explains the preprocessing of the data, localization 
of the facial region, and the facial features extraction. Further 
details are given in our published research in [19]. Range 
images, captured by laser scanners, have some artifacts, noise, 
and gaps. In the preprocessing step, we first apply median 
filtering to remove sharp spikes and noise, that occur during the 
scanning of the face, followed by interpolation to fill up the 
gaps, and low pass filtering to smooth the final surface. This is 
followed by face localization using facial template matching to 
discard the neck, hair, and the background areas of the range 
image. The facial range image template is correlated with the 
range images of a given face using normalized cross-
correlation. We start by roughly detecting the location of the 
nose tip and then translate the template such that the detected 
tip of the nose is placed on the location of the nose tip of the 
range image under test. Afterward, we iteratively apply a rigid 
transformation to the template and cross-correlate the result 
with the subject’s range image to find the best pose. Finally, 
the area underneath the template with the maximum correlation 
is considered as the localized facial region. Subsequently, we 
use Gaussian curvature to extract the two inner corners of the 
eyes and the tip of the nose. From [18], the surface that either 
has a peak or a pit shape has a positive Gaussian curvature 
value (K > 0). Each of the two inner corners of the eyes has a 
pit surface type and the tip of the nose has a peak surface type 
that is detectable based on the Gaussian curvature. These points 
have the highest positive Gaussian curvature values among the 
points on the face surface. Fig.1.a shows the result of 
calculating Gaussian curvature for one of the sample range 
images in the gallery.  
 

(b)(a) (c)  
Figure 1 Features extraction process (a) Gaussian curvature 
showing high values at the nose tip and eyes corners (b) Result 
of thresholding Fig.1.a (c) Final result of feature extraction. 
 
The highest points in Fig.1.a correspond to the points with 
pit/peak shape. We threshold the Gaussian curvature to find the 
areas that have positive values greater than a threshold, 
producing a binary image. See Fig.1.b. This threshold is 
calculated based on a small training data set different from the 
images used in the recognition experiments. Finally, the three 
regions with the largest average value of Gaussian curvature are 
the candidate regions that include the feature points. The 

locations of the points with maximum Gaussian curvature in 
these regions are labeled as feature points. Fig.1.c shows a final 
result of the three feature extraction points. These features are 
used in the 3D model alignment as we show next. 

3. 3D FACE MODELING 

This section deals with molding the human face using its 
extracted features and a generic 3D mesh model. The idea is to 
align the 3D model to a given face using the extracted 3D 
features then proceed with fitting the aligned triangles of the 
mesh to the range data, using least square plane fitting. Next, 
the aligned triangles of the model are subdivided to higher 
resolution triangles, before applying a second round of plane 
fitting, to obtain a more realistic and a smoother fitted surface 
resembling the actual surface of the face. Fig.2.a shows our 
neutral 3D model with a total of 109 labeled feature vertices 
and 188 defined polygonal meshes. In addition, the model is 
designed such that the left and right sides of the jaw fall within 
but not on the edges of the face boundary. This approach avoids 
incorporating inaccurate data at the facial edges of the captured 
range images. We explain next the process of aligning the mesh 
model to the range data. 
 
3.1. Global alignment 
 
In the global alignment step, we rigidly align the 3D model 
using the 3D feature points, PI, obtained from the range image, 
and their corresponding feature vertices, PM, in the model. 
Subscripts I and M indicate image features and model vertices, 
respectively. To achieve this goal, the model must be rotated, 
translated, and scaled. Eq.1 gives the sum squared error 
between PI and PM in terms of scale S, rotation R, and 
translation T for N points. 
              N
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An example of the aligned 3D model is demonstrated in Fig.2.b 
and Fig.2.c for 2D view and 3D view, respectively. As shown in 
the figures, the triangles of the model are buried either totally or 
partially above or below the 3D data. We show next how to fit 
and deform the model’s triangles to be as closely as possible to 
the 3D data. 
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Figure 2 (a) 3D mesh model (b) 2D view of aligned 3D model 
vertices to the range data (c) 3D view of model to the range 
data.  

3.2. 3D face model deformations 
 
The first step in deforming the model is to extract the 3D data 
facing (above, below, or within) each triangle using barycentric 
coordinate [5]. The basic principle is that for any triangle with 
three vertices coordinates Pv=(X,Y,Z) given by P1, P2, and P3, 
barycentric coordinate can determine whether any other point P 
lies inside or outside the perimeters of the triangle (subscript v 
indicates the vertex number). Once the cloud of the 3D data 
points is segmented by the barycentric coordinate, they are 
represented by a plane using least square fitting. The general 
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equation of a plane, with non-zero normal vector N, is defined 
in 3D as 
 
      0dcZbYaX , where  ),,( cbaN          (2) 
        
For n number of points, Eq.2 can be written in least square form 
as   
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where the coordinates (Xi,Yi,Zi)’s are those of all the data points 
segmented by the barycentric coordinate. Eq.3 can be solved for 
the plane equation parameters, B = [a, b, c, d], which is then 
substituted in Eq.2, leading to a plane representing the 3D data 
points. Fig.3.a illustrates a concept example of a triangle with 
3D data points in 3D space. Fig.3.b shows the segmented data 
within the triangle which are represented by a plane using Eq.2. 
From the mathematical geometry of a plane, having the 
parameters of B, any point on the plane can be evaluated. In our 
work, we deform each corresponding mesh triangle to the 3D 
data points, by first discarding the three vertices Z coordinates, 
evaluating the X and Y coordinates, and solving for the new Z 
coordinate (given the parameters in B from Eq.3). This 
produces a mesh triangle, with new depth coordinates, lying on 
the plane that is approximated by the dense 3D data points. 
Fig.3.c shows the concept of deforming the mesh triangle to the 
plane representing the data. Essentially, the pose of the triangle 
is changed to match that of the plane.  
 

(a) (b) (c)  
Figure 3 The process of deforming the triangles of the 3D mesh 
model, (a) Given cloud of 3D data and a mesh triangle (b) 
Segmenting the 3D data and plane fitting (c) Deforming the 
mesh triangle to the plane representing the 3D data.   

Subsequently, we repeat the deformation process to all the 
triangles of the mesh model. Fig.4. shows an example of a 
complete deformed model superimposed on the data in 2D and 
3D views. Comparing Fig.4.a-b with the initially aligned model 
of Fig.2.c-d, we see that the deformation and fitting of the 
model to the range data are clearly observed. The triangles of 
the mesh model have come closer to the data.  
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Figure 4 Deformed model superimposed on the range data. (a) 
2D view (b) 3D view. 

    The deformed model of Fig.4 is a good representation of the 
data, yet it’s not smooth enough to represent the high resolution 
and curvatures of the 3D data. In the next step, we subdivide the 
triangles of the model to a higher resolution in a manner shown 
in Fig.5.a. New vertices are computed based on the locations of 
the deformed vertices.   
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Figure 5 (a) 1 to 4 triangle subdivision (b) Result after applying 
triangle subdivisions to the deformed model of Fig.4. 

Fig. 5.b shows the result of subdividing the deformed model of 
Fig.4. This increases the number of vertices and triangle meshes 
of the original model from 109 and 188, respectively, to 401 
vertices and 752 polygonal meshes. Finally, because the new 
triangles do not reflect actual deformation to the data, we 
deform them once again using the same deformation process 
explained above. The introduction of smaller triangles gives 
more effective triangle fitting of the data especially at areas of 
high curvatures. Fig. 6.a-b-c show the final result of the 
deformed model, superimposed on the data, in 2D view, 3D 
view, and a profile 2D view, respectively. In Fig.6.a-b-c, 
because most of the models’ vertices are embedded within the 
data, we use the “*” symbol to clearly show their locations. 
Fig.6.d shows a profile (YZ-axis) view of the model in Fig.6.c 
without the data. This deformed model, containing 401 vertices 
points, is the final representation of the facial data, which 
originally contained about 19,000 points (based on an average 
range image size of 150 by 130). This is nearly a 98 % data 
reduction. We show next the application of this model in 3D 
face recognition. 
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Figure 6 Final deformed model. (a) 2D view (b) 3D view (c) 
profile view superimposed on the data (d) mesh model without 
showing the data.  

4. 3D FACE RECOGNITION 

Face recognition has received great attention in the past few 
years. A recent literature survey of 3D face recognition is given 
in [9].  The final result of Fig.6 gives a model with 401 
deformed vertices specific to the given subject’s 3D range data. 
In this section we explore the use of the deformed final model 
in 3D face recognition using the GAVAB publicly available 
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database captured by a 3D scanner [8]. This database contains 
61 subjects’ range images with two frontal datasets per subject. 
In our recognition system, we use one set of the range data for 
the query and the second set for the database.  For both sets we 
obtain the 3D face models as outlined in previous section. We 
test the recognition using a voting-based classier.  The voting 
classier is a distance classifier that counts the maximum number 
of features in a gallery model that have minimum distances to 
the corresponding features of the probe. A face is recognized 
when it has the maximum number of votes. Fig.7 shows the 
Cumulative Match Characteristic (CMC) curve of our 
recognition system attaining 90.3 % rank one recognition rate. 
It has been reported that the same database was used in [6] 
achieving 78 % rank one recognition rate for 60 out of 61 
subjects using 68 curvature-based extracted features. In our 
experiment six subjects out of the 61 were not correctly 
recognized. The wrong recognition was mainly due to dataset 
being either very noisy, incomplete, or the query range image 
set looks very different from the database set. 
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Figure 7 Cumulative Match Characteristic (CMC) curve. 

Fig.8 shows two of the six subjects that were not recognized.  
Both query and database sets of Fig.8.a show noisy and 
incomplete facial scan at the left and right sides of the face. 
Fig.8.b shows similar incomplete data at the eye region. Our 
preprocessing step may deal well with noisy data but cannot 
cope with large areas of partially missing scans. In these areas 
the triangles of the model have no data for mesh fitting.  
 

Query Database
(a) (b)

Query Database
 

Figure 8 Query and database range images of two out of six 
misrecognized subjects. 

5. CONCLUSION AND FUTURE WORK 

We presented an algorithm for 3D face modeling using range 
data. The algorithm relies on deforming the triangular meshes 
of the model to the range data establishing direct model vertices 
correspondences with other deformed models in the database.  
These feature correspondences greatly facilitate faster 
computational time, accuracy, and recognition comparisons. By 
only detecting three facial features and a generic model, we 
achieved a 90.3 % rank one face recognition using a noisy 
database. In order to demonstrate the performance of our 
algorithm on a large scale dataset, we are in process of applying 
the algorithm to the Face Recognition Grand Challenge (FRGC) 
database [7]. In addition, we are researching reliable ways to 
incorporate facial expression in our deformation algorithm.     
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