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ABSTRACT

In this paper, we place the integral image-based approach for

multi-scale feature construction, popularized by Viola and

Jones, into a common framework of understanding. The

integral image within this framework represents space vari-

ant image filtering with the zero-order B-spline. Given this

framework, we propose efficiently computable higher-order

B-spline image features based on generalized integral images

that have the potential to be more accurate, yet efficient as

compared to previous integral image-based efforts.

Index Terms— scale-space, B-spline, integral image, in-

terest point, feature descriptor

1. INTRODUCTION

Recently, we have witnessed a resurgence in the research

of local feature detectors/descriptors and their applications.

Given their demonstrated potential for successful application

in various contexts, several researchers have turned their at-

tention to efficient computational (approximation) schemes

that do not substantially sacrifice performance (e.g., [1, 2, 3]).

In this paper we show that these approaches represent a spe-

cial case (the coarsest model) of a more general theoretical

framework, that allows more accurate, yet efficiently com-

putable multi-scale feature representations.

Concerns with fast computational techniques are also

shared by the research in multi-scale representations that em-

bed the original image into a one parameter family of derived

images, where each derived image contains structures limited

to a range of scales. The Gaussian-based linear scale-space

paradigm, for example, constructs the derived representations

with desirable multi-scale properties. Gaussian kernel convo-

lution is, however, too resource demanding for many visual

applications. Spline generated scale-spaces represent an al-

ternative for fast realizations of multi-scale decompositions

of images [4, 5]. Indeed, spline-based filtering represents a

general class of multi-scale generators that include Gaussian-

based linear filtering as its limiting case.

In this paper we explore an efficient approach based on

generalized integral images for realizing space variant image

descriptors by nth order B-spline filtering. Indeed, the inte-

gral image representation used in recent applications repre-

sents a special case, namely, zero-order B-spline filtered rep-

resentations realized by the use of the first-order integral im-

age. Similarly, existing multi-scale techniques, such as cas-

caded uniform filtering and the Gaussian pyramid, are but a

form of B-spline filtering [5]. In either case, our paper pro-

vides a more general framework that allows deeper insights

into these approaches rather than a radical departure from

them.

In the following, Section 2 discusses the B-spline scale-

space and an efficient non-recursive realization based on the

generalized integral image formulation. Section 3 concludes

with a discussion of two visual applications that may profit

from our approach.

2. ANALYSIS AND COMPUTATION

2.1. B-spline functions

A continuous B-spline of order n is defined recursively using

the zero-order (centred) B-spline of width T as

β0
T (x) =

{
1/T, | x |< T/2
0, otherwise

and, (1)

βn
T (x) = βn−1

T (x) ∗ β0
T (x), (2)

where ∗ denotes the convolution operator, and βn is the nth

order B-spline1. Thus, a B-spline can be generated by con-

volving a rectangular pulse with itself n times.

The B-spline space can be seen as a more general mul-

tiresolution function space with the Gaussian representing its

limiting case. Any square integrable signal can be repre-

sented as a weighted sum of shifted and dilated B-splines in

nested spaces of spline functions [5]. The B-spline of degree

n is n times continuously differentiable except at the knot

points which are n − 1 times differentiable by construction

[6]. B-spline kernels preserve the analytical properties of its

Gaussian counterpart very well due to their fast convergence,

where the variance of the nth order B-spline, σ2
n = T 2(n+1)

12
[5]. The cubic B-spline provides a very close approximation

of the Gaussian function. Furthermore, even a lower order

1βn(x) denotes the nth order centred B-spline generated with a rectan-

gular pulse of length T = 1. Similar notation is also applied to the discrete

version (see below).
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Algorithm 1 Generalized integral image computation

1: // pre-computation
2: set initial integral image, In(x, y), as input image

3: for each integral image order do
4: for each image point do
5: increase cumulative row sum, c(x)
6: In(x, y) = In(x, y − 1) + c(x)
7: end for
8: end for
9: // apply filter with a given kernel position, size and order

10: compute intersection

11: normalize

may be sufficient for most applications. The discrete sampled

B-spline bn
T (k) of order n can be generated by sampling its

continuous counterpart at the scale T ≥ 1 [5]:

bn
T (k) =

1
T

βn

(
k

T

)
,∀k ∈ Z. (3)

These results can be easily extended to higher-dimensional

signal spaces using the tensor product splines, for example,

the 2-D case is given by βn(x, y) = βn(x)βn(y).

2.2. Generalized integral images

The concept of the integral image was introduced in [7, 8] and

later in [9] for the purpose of enabling constant time filtering

with axis aligned rectangular filters (i.e., uniform B-spline).

This section focuses on the generalization of the integral im-

age that allows for non-recursive axis-aligned filtering with

the B-spline kernel of order n. This generalization reported

by several authors [10, 11] relies on repeated integration.

The key identity for formalizing the generalized integral

image is:

f ∗ g =

⎛
⎝

x∫
f(x′)dx′

⎞
⎠ ∗

(
dng

dxn

)
= fn ∗ g−n, (4)

where ∗ denotes the continuous convolution operator, sub-

script n denotes n-fold partial integration and subscript −n
denotes n-fold differentiation.

For the case of n-fold convolution of the box filter, β0
T (x),

with the input signal, I(x), from (4) it can be shown [10, 11]

that this operation reduces to weighted sampling the (precom-

puted) n-fold partial summed image:

Ismooth = I(x)∗bn
T (x) =

1
Tn

n∑
i=0

(−1)i
(

n
i

)
In(x +

Tn

2
− iT ),

(5)

where Tn is the normalization factor; see Algorithm 1 for an

algorithmic presentation of (5).

The 1-D formulation extends easily to higher dimensional

signals due to the separable definition of the B-spline. For

2-D, denoted bn(x1, x2) = bn(x1)bn(x2), (n + 1)2 weighted
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Fig. 1. Weighted sampling coefficients for low order nth or-

der integral images. Note that the distance between samples

is a function of the scale of the filter, T (see Eq. 5).

samples are required; Fig. 1 lists the weighted sampling coef-

ficients for integral images of orders 1 to 3.

Finally, given the integral image computation we recover

derivative measurements by performing numerical differenti-

ation through Taylor series expansion, e.g., the first and sec-

ond derivatives are given by,

I ′
smooth

(x) = (I+
smooth

(x)− I−
smooth

(x))/2 (6)

I ′′
smooth

(x) = I+
smooth

(x)− 2Ismooth(x) + I−
smooth

(x), (7)

resp., where I+(x) = I(x + 1) and I−(x) = I(x− 1).

2.3. Computational costs

Low computational cost is the main motivation for using

integral images. Here we show that the higher-order in-

tegral images conserve this useful feature (while providing

a means for computing a better approximation to classical

scale-space, see Section 2.1) by considering the cost of in-

tegral images of various orders in comparison to other well-

established techniques. Similar to [2], we compare the inte-

gral images of various orders with the following Gaussian fil-

ter approaches: non-separable/separable/recursive Gaussian
and global FFT-based filtering.

The total cost consists of four major components:

cost = wh(cana + cmnm + cbnb + ctnt), (8)

where w and h denote the width and height of the input image,

resp.; ca, cm, cb and ct the cost of addition, multiplication, bit

shift and type conversion, resp.; na, nm, nb and nt denote the

number of operations.

Assuming an integer-based input image, the integral im-

age of order n requires one floating-point multiplication for

normalization (hence, one type conversion), 2n integer ad-

ditions for construction of the integral image, (n + 1)2 − 1
integer additions and (n + 1)2 integer multiplications for ac-

tual filter application. However, in the case of integers, it is

possible to optimize the computation further by substituting

the multiplications with bit shifts and additions. Table 1 com-

pares the costs of all considered filtering techniques.

Next, we consider the relative cost of processor opera-

tions measured against the cost of integer addition and take

the costs reported in [12] as a reference measure. [12] states
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Filter technique Complexity
Multiplication Addition

Gaussian N2 N2 − 1
Separable Gaussian 2N 2(N − 1)
FFT 2 log(w · h) 2 log(w · h)
Recursive Gaussian 14 6

nth Order Integral Image 1 + (n + 1)2 2n + (n + 1)2 − 1

Table 1. Comparison of various 2-D linear filtering ap-

proaches (operations per pixel), where N , w and h correspond

to kernel size (assuming square dimensions), image width and

height, resp.. Adapted from [2].
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Fig. 2. Comparison of total relative computational cost for

various 2-D Gaussian filtering techniques.

that integer addition and bit shift cost 1 unit each, integer mul-

tiplication costs 4 units, and type conversion, floating-point

multiplication and addition cost 20 units each. Note, how-

ever, the relative costs will vary across architectures.

Figure 2 shows the relative costs of higher-order integral

images up to order four and their alternatives. Notice that the

costs for the integral image-based filtering are consistently be-

low the costs of the other methods, where costs increase with

order. Also, the running time of filtering via integral images

does not depend on the kernel size. Importantly, higher-order

integral images are still significantly more efficient than the

recursive/separable Gaussian or FFT approaches.

Aside from their low relative cost, integral images are

non-recursive, i.e., one can directly extract scale information

for any region without prior construction of the “entire” scale

space. Such a flexibility is extremely important for sparse

feature computation (e.g., [13]), and cascade-type object de-

tectors (e.g., [9]) where information is extracted only when

required, thus avoiding unnecessary expensive computations.

Significantly, out of all the non-integral-image filtering ap-

proaches in Table 1, only the non-separable Gaussian pos-

sesses this feature, however, it is significantly more expensive

(especially at coarse scales).

In practice, care must be taken to avoid arithmetic over-

flow. For an input image of width and height 2w and 2h,

resp. and image intensity resolution, b (in bits), the worst case

memory resolution required for an nth order integral image is

log2((2w+h)n2b) = (w+h)n+b bits per pixel. For example,

a third-order integral image of a 512 × 512 input image with

intensity resolution b = 8 requires 62 bits per pixel, which is

within the bounds of current 64-bit CPU architectures.

+- +- +-

Fig. 3. Multi-scale example. Top row: multi-scale quadratic

B-spline representation at scales T = 0, 2, 4 and 6 (left to

right). Bottom row: DoB representation.

To reduce the number of bits per entry, image subdivision

techniques have been proposed (for details, see [7]). Also, the

image value range can be shifted such that the range spans

both positive and negative values. This has the effect of re-

moving the monotonicity of the integral image and thus re-

duces the maximum value reached.

3. DISCUSSION

The framework presented in this paper not only introduces

new insights into many existing visual applications, but

also opens new possibilities. In this section, we discuss

this advantage through two applications, namely, interest

point detection and steerable filters. The source code is

available at: http://www.cse.yorku.ca/∼kosta/
Generalized Integral Image/gii main.html.

The difference of Gaussian (DoG) is a popular means for

identifying multi-scale key-points (e.g., [13]). It is an ef-

ficient approximation of the scale-normalized Laplacian of
Gaussian (LoG) representation that is used to identify blob-

like structures in the image. The DoG is recovered by tak-

ing differences between adjacent levels of a Gaussian scale-

space representation. Given the DoG, key-points are identi-

fied by a local maxima search in space and scale. To acceler-

ate the DoG construction, Grabner et al. [2] approximate the

Gaussian filtering by box filtering using the (first order) inte-

gral image, they term the resulting images difference of mean
(DoM) images. An advantage of the DoM over the DoG, is

that it does not rely on subsampling, rather computations are

done at the spatial resolution of the input image; the result-

ing localized key-points are spatially accurate within a pixel.

Thus, a costly spatial interpolation post-processing step (e.g.,

[13]) is avoided. A drawback of the box filtering approach

is that it may introduce distracting spurious structures in the

form of Mach bands. In addtion, due to the pronounced non-

isotropic nature of the box filter one can expect a reduction

in rotation invariance. This can be clearly seen in Grabner

et al.’s experiments where their DoM detector yields its worst

result at 45◦. The DoM can be interpreted as filtering with the

zero-order B-spline. Rather than limit filtering to zero-order,

the DoG may be approximated by B-splines of higher-order

that may increase accuracy while maintaining efficiency when

computed with the generalized integrals, we term this gener-

alization the difference of B-spline (DoB) representation (see
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(a) DoG (b) DoB (first-order B-spline)

Fig. 4. Comparison of detected key-points (marked in green)

found by Lowe’s DoG detector and our DoB detector. Input

image courtesy of Michael Grabner.

Fig. 3). Figure 4 provides a comparison between key-points

detected using Lowe’s DoG detector [13] and our first-order

DoB detector. Notice that the DoB detects the prominent

blob-like structures very well. In a future correspondence we

will present a quantitative comparison between the DoG and

our DoB detectors.

Steerable filters [14] are a class of filters where a filter

of arbitrary orientation is synthesized by a linear combina-

tion of K basis filters, denoted fi(x), formally, f(x; θ) =
K∑

i=1

ki(θ)fi(x). Gaussian derivatives are a widely used class

of steerable filters, where the size of the basis is equal to one

greater than the derivative order. For example, the first deriv-

ative of the Gaussian, G, at an arbitrary orientation θ is given

by, G1(θ) = cos(θ)∂G
∂x + sin(θ)∂G

∂y . Villamizar et al. [3]

propose to approximate the steered Gaussian derivatives by

replacing the Gaussian derivative by Haar-like filters and use

the (first-order) integral image for fast computation. The ver-

tical Haar filter, h(x, y), can be seen as a special case of the

derivative of a B-spline, specifically, the derivative of the first-

order B-spline along the x-axis with zero-order blurring along

the y-axis., formally,

h(x, y) =
dβ1(x)

dx
β0(y). (9)

Given that higher-order B-splines provide better approxima-

tions of the Gaussian kernel, it suggests the use of the deriv-

ative of higher-order B-splines as basis filters (see Fig. 5 for

an example). Obviously, the need for better accuracy in fil-

ter representation ultimately depends on its application. The

use of the steerable Gaussian derivatives may provide richer

yet efficiently computable features for feature selection-based

learning approaches (e.g., [9]). Levi and Weiss [15] demon-

strate that the use of richer features than the standard linear

features of Viola and Jones [9] reduce the number of train-

ing examples required. Furthermore, they provide a means

for rotation-invariant feature representations achieved by ro-

tating responses based on a canonical orientation (e.g., [3]).

In summary, this paper develops in a principled manner

a general framework that provides new insights into several

(a)

(b)

Fig. 5. Steerable filter example. (a) first derivative of the

quadratic B-spline in the x and y directions (basis) and the

steered result (π/4 rad.) (left to right). (b) Circular disk with

its basis images and the steered result (π/4 rad.) (left to right).

existing approaches to multi-scale image description and fea-

ture representation. This framework includes as special cases,

the first-order integral image and Gaussian multi-scale repre-

sentations. Thus, not only are the desirable properties of both

techniques preserved (e.g., efficiency) but further advantages

are also acquired. Finally, we have presented two of a multi-

tude of potential applications of this generalized theory.
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