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ABSTRACT

A key goal of far-field activity analysis is to learn the usual

pattern of activity in a scene and to detect statistically anoma-

lous behavior. We propose a method for unsupervised, multi-

attribute learning of a model of moving object tracks that en-

ables fast reasoning about new tracks, both partial and com-

plete. We group object tracks using spectral clustering and

estimate the spectral embedding efficiently from a sample of

tracks using the Nyström approximation. Clusters are mod-

eled as Gaussians in the embedding space and new tracks

are projected into the embedding space and matched with

the cluster models to detect anomalies. We show results on

a week of data from a busy urban scene.

Index Terms— image analysis, clustering, unsupervised

learning

1. INTRODUCTION

A key goal of any visual surveillance system is to automati-

cally determine when an observed scene contains unusual or

unexpected activity. In the past this task was performed by a

human expert: someone familiar with the scene who is able

to recognize when something out of the ordinary occured. A

typical surveillance site may have so many sensors in different

locations that it is no longer feasible for a person to monitor

all of them. Machine vision systems are needed to mine the

collected data for potentially interesting activity. This has fos-

tered a new area of machine vision research, aimed at building

statistical models of the usual pattern of activity in scenes.

In this paper we focus on the behavior of individual mov-

ing objects in a complex far-field scene, such as surround-

ings of buildings (parking lots, streets, sidewalks), airport or

train station halls or any large spaces observed by a far-field,

wide field-of-view camera. A central issue with this prob-

lem is dealing with the huge volume of data. A day of ob-

servation of a typical scene may contain tens of thousands

of moving objects of various sizes (people, groups, bicycles,

motorbikes, cars, trucks, etc.) taking a wide variety of dif-

ferent paths through the scene. We want to distill, from this

huge volume of data, compact models of the common (and

uncommon) activities in the scene, without prior assumptions

about those activities. Such models would enable us to de-

tect unusual activities even as they are occuring, by flagging

trajectories when they begin to deviate from normal modes.

This could be used to alert a human observer or to cue a pan-

tilt-zoom system to focus in on a particular event. With rich

enough models, we could also detect unusual events by fac-

tors other than trajectory, such as time of day or type of object

in a particular location.

We assume that our system tracks moving objects in the

scene, providing positions as well as other attributes (e.g. size

or silhouette) in every frame. We propose an algorithm that,

given this data, learns a model of object motion in the scene

in an unsupervised fashion by clustering object tracks, i.e.,

trajectories with additional attributes such as size, speed and

direction.

Several recent papers address the problem of modeling

object paths in a far-field moving scene. The main differences

are in the choice of clustering algorithm—fuzzy k-means [4],

dominant set [6], graph cuts [9, 5, 3, 11], self-organizing maps

[7], agglomerative [1]—and the choice of distance measure

between object trajectories (see [12] for a comparison of dis-

tance measures). Results are shown on relatively simple scenes

and small data sets ranging from 10s of tracks to about 1200

[4, 6]. Most of the mentioned approaches only cluster tra-

jectories based on position, ignoring attributes of the objects

such as shape. Those that use additional attributes generally

group clusters based on each attribute separately (e.g. sub-

clustering [4]) rather than in a global fashion.

The key contributions of the approach presented here are

combining the following:

(1) The algorithm is capable of using a very large dataset

for learning a model of object motion through the scene. This

is necessary in order to effectively model active, complex

scenes where the number of observed objects per hour reaches

several hundred or more. We demonstrate results on a collec-

tion of ca. 40,000 tracks representing a week of data from an

active outdoor scene.

(2) The similarity measure between tracks allows for com-

bining multiple object attributes in a principled manner.

(3) The model representation is efficient enough for us

to reason about incoming objects online. This includes the

ability to reason about partial object tracks.

Our method is particularly useful in surveillance systems

that must make decisions about scene activity while it is in
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progress. For instance, attentive surveillance systems, in which

a movable camera captures high resolution images of scene

activity, require a decision process to task the camera to par-

ticular locations. For simple scenes, this can be done with a

clever scheduling algorithm; complex scenes in which tasking

a camera to every moving object is not feasible may require

an attention model based on knowledge of the typical scene

activity.

2. ALGORITHM

(1) Given a set of tracks {Ti}, cluster them into k groups

based on similarity along multiple attributes. We use an ap-

proximate spectral method that clusters a large amount of data

using a much smaller sample.

(2) Model object behavior in the scene as a mixture of Gaus-

sians in the spectral embedding space.

(3) Given a (partial or complete) new track, project it into

the spectral embedding space by comparison to the Nyström

sample used in step 1.

(4) Find anomalies by thresholding on the likelihood of the

track under the mixture model.

3. COMPARING TRACKS

An object track T = {oT
i } is an ordered set of observa-

tions describing the estimated state of the object as it moves

through the scene. The elements of the observation vectors

oT
i describe the object’s attributes, such as size, image coordi-

nates of the centroid, velocity, etc. A good similarity measure

should evaluate two tracks as very similar when the spatial

trajectories are collocated in the scene and object attributes

such as velocity and size at spatially corresponding points in

the tracks are similar. If two objects take the same path but

have dramatically different velocities or travel in opposite di-

rections, their tracks should not be similar.

To achieve this, we define the distance between tracks A
and B as a vector of attribute-specific distances—one for each

object attribute along which we wish to compare tracks:

D(A,B) = [dj(A,B)]. (1)

To calculate the attribute-specific distance dj between tracks

A and B, we find the average difference in that attribute be-

tween observations in track A and their corresponding closest

observations (in image coordinates) in track B. Let pos(o) be

the image position of the observation o, and oB
ν(A,i) be the

observation in track B whose position is closest to oA
i in track

A:

oB
ν(A,i) = argmin

oB
j

‖pos(oA
i )− pos(oB

j )‖. (2)

The directed attribute-specific distance between tracks is:

dj(A → B) =
1
|A|

∑
i

d(oA
i (j),oB

ν(A,i)(j)), (3)

and the undirected (symmetric) distance is:

dj(A,B) = min(dj(A → B), dj(B → A)). (4)

We use the minimum, as in [11], to ensure that partial tracks

get clustered together with other tracks along the same path.

The function d(o1(j),o2(j) in equation (3) is simply the

scalar difference in the j-th attribute between the two obser-

vations. For instance, if the attribute is size, it is the difference

between the sizes of the objects.

In our experiments, we use the area of the object’s bound-

ing box, the speed, direction of motion and position in the

image as the object attributes. Other features such as object

shape or appearance can also be incorporated.

We convert the distances D from (1) to similarities with a

multivariate Gaussian kernel:

S(A,B) = exp(−DT (A,B)Σ−1
A,BD(A,B)) (5)

Because we are combining distances along several differ-

ent attributes, the parameters in Σ should be set such that each

attribute is weighted similarly in the cumulative distance. To

do this, we set ΣA,B for each pair of tracks separately by set-

ting the diagonal elements to be the average square distance

from A or B to the rest of the tracks in the dataset, whichever

is larger:

ΣA,B = diag(σA,B
j ), (6)

σA,B
j = max(

1
N

∑
k

d2
j (A, Tk),

1
N

∑
k

d2
j (B, Tk)). (7)

4. CLUSTERING TRACKS

We use the Normalized Cuts spectral clustering algorithm from

[2] to group tracks into clusters:

(1) Compute the NxN affinity matrix A of pairwise sim-

ilarities between all N data points (each of which is a track).

(2) Scale affinity matrix A by the degree matrix D: A′ =
D−1/2AD−1/2. The degree matrix is a diagonal matrix of the

row sums of A.

(3) Calculate the NE � N largest eigenvectors of the

scaled affinity matrix A′ and assemble them as columns of

the eigenvector matrix U in descending order by eigenvalue.

(4) Scale each row of the eigenvector matrix U = (uij)
by the square root of the corresponding row sum of A: u′ij =
uij/

√
di.

(5) The spectral embedding of each data point is the cor-

responding row of the scaled eigenvector matrix U′.
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Fig. 1. (a) Mean ratio of cluster size to distance to nearest

cluster. (b) Fraction of inconsistently clustered pairs. 10 runs

were performed for each number of clusters. The curves cor-

respond to different dimensionalities of the embedding.

(6) Use k-means to cluster data points in the spectral em-

bedding space.

Calculating the full similarity between each pair of data

points in step 1 of the algorithm would be prohibitively ex-

pensive. Instead, we can estimate the eigenvectors of the en-

tire affinity matrix using only comparisons between each data

point and a sample of the entire dataset using the Nyström

approximation, as in [2]:

(1) Calculate the n x n matrix An of pairwise similarities

between a subset of size n � N of the entire dataset and the

n x (N − n) matrix B of similarities between the n sample

points and the rest of the data. The full N x N similarity

matrix A can be written as

A =
[

An B
BT C

]
. (8)

Note that C, the bulk of the matrix, will never be computed.

(2) Let ar be the row sums of An, and br and bc the row

and column sums of B. Estimate the row sums d̂ of the full

matrix A (needed in steps 2 and 4 above) as

d̂ =
[

ar + br

bc + BT A−1
n br

]
. (9)

(3) Divide each element in An and B by the square root of

the product of the estimated row and column sum of the full

matrix A, thus obtaining the scaled versions A′n and B′. The

relationship of the scaled full affinity matrix A′ to A′n and B′

is the same as the relationship in equation (8).

(4) Let U be the eigenvectors and Λ the eigenvalues of A′n
such that A′n = UΛUT . Estimate the eigenvectors of A′ as

Û =
[

U
B′T UΛ−1

]
. (10)

5. CLASSIFYING NEW TRACKS

To classify new tracks, we project them into the spectral em-

bedding space obtained from the clustering using the method
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Fig. 2. Top: two of the 10 most salient clusters. Most typical

track (closest to the mean) is highlighted. Bottom: each ar-

row shows average velocity of tracks in this cluster that pass

through the arrow’s origin.

described in [8], where spectral clustering with the Nyström

extension was used to create an neuroanatomical atlas from

fiber tractography paths. The process is similar to the compu-

tation done for each row of the matrix Û in section 4. Given a

set of m new tracks, we calculate the n x m matrix S of sim-

ilarities between the new tracks and each of the tracks from

the sample used to obtain matrix A in section 4. Let sc be the

column sums of S. We scale ST to obtain S′T using the row

sums estimated as sr = sc + ST A−1
n br and the column sums

ar + br. The embedding of the new tracks then are the rows

of S′T UΛ−1 (see [8]), scaled by the corresponding row sums

sr. Note that this is the same computation as was done in (9)

and (10).

6. RESULTS

For our experiments we used a dataset of ca. 40,000 tracks

from a very busy outdoor scene, corresponding to one full

week of activity. We obtained the tracks using the background

subtraction and tracking algorithm from [10]. Tracking was

performed at 30fps but the tracks were pruned to retain only

observations at least 500ms apart. The attributes along which

we compared tracks were position of the object centroid in

the image, area of the bounding box, direction of motion and

speed.

To determine a suitable number of clusters, we ran our

clustering algorithm for various numbers of clusters and var-

ious values for NE (the dimensionality of the spectral em-

bedding) using a sample of ca. 3,000 tracks to estimate the

embedding vectors. For each clustering, we calculate the av-
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Fig. 3. Typical tracks from the top 20 most significant clus-

ters. Arrows indicate velocity; color shows average size along

track (warmer color indicates larger size).

erage ratio of cluster size (in terms of mean distance to cen-

troid over all cluster members) to the distance from the mean

to the nearest cluster centroid (shown in Figure 1a). As clus-

ters in the data begin to be subdivided, this ratio eventually

stabilizes. We also calculate the fraction of pairs of tracks

that sometimes get clustered together in the same cluster and

sometimes apart (Figure 1b). Based on these criteria, we se-

lect 150 as the number of clusters for our data set.

Figure 2 shows two of the most significant clusters (in

terms of number of members) along with average velocities

in those clusters. Both clusters consist of tracks with simi-

lar paths through the scene and similar speeds and direction

of motion. The clustering is robust to erroneous and broken

tracks.

In Figure 3, we show the most typical track (the one clos-

est to the mean) from each of the top 20 most significant clus-

ters, indicating also the velocity and the average size of the

object. We can see that paths of different direction, velocity,

size and location are clustered separately.

In Figure 4, we show examples of tracks with low like-

lihood under the scene model. In (a) the vehicle enters the

pedestrian zone, backs out and continues along the road. In

(b) the trajectory of the vehicle is not unusual but the ve-

locities are: the vehicle stops for several seconds just before

the turn. In (c) the person takes an unusual path through the

grassy area. In (d) the person drags an object to the end of the

lot, leaves it there and walks back. In this case, the changes

in size and path both cause the event to appear unusual. The

types of anomalies shown in (b) and (d) would be impossi-

ble to detect without being able to compare tracks in terms of

multiple object attributes.

The experiments were run on a desktop workstation with

dual 3GHz processors. The one-time clustering step takes

several days of computation; the classification of a single new

track takes a few seconds in our MATLAB implementation.

7. CONCLUSTIONS AND FUTURE WORK

We demonstrated a system capable of learning a multi-attribute
scene model from a very large amount of data. Though we

a b

Fig. 4. Examples of unusual tracks (anomalies).

show promising results, much further analysis remains to be
done. For instance, we intend to examine how the approach
scales with more object attributes (appearance, time of day,
etc) added to the distance measure. Because classifying new
tracks is faster with a smaller sample used for the Nyström
approximation, we are also interested in determining how the
sample size affects clustering performance.
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