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ABSTRACT

We propose a multi-camera event detection framework that can op-
erate on a common ground plane as well as on the image plane. The
proposed event detector is based on an object-centric state mod-
eling that uses a Continuous Distribution Hidden Markov Model
(CDHMM). Video objects are first detected using statistical change
detection and then tracked using graph matching. Next, the algo-
rithm recognizes events by estimating the most likely object state
sequence using a HMM decoding strategy, based on the Viterbi al-
gorithm. We demonstrate and evaluate the proposed framework on
standard event detection datasets with single and multiple cameras,
with both overlapping and non-overlapping fields of view.

Index Terms— Hidden Markov Model, Viterbi algorithm, ho-
mography, event detection, multi-camera.

1. INTRODUCTION

Manual annotation of news, sports and surveillance video is a time
consuming and tedious task. For this reason, automatic algorithms
capable of detecting events of interest to index videos or to trig-
ger alarms are highly desirable. In multi-camera surveillance video,
event detection can be performed on the image plane or on the ground
plane. In particular, the use of the ground plane offers an extended
coverage of the monitored scene as the objects can be tracked across
multiple cameras.

Event detection algorithms can be classified into three main groups,
namely 3-D model-based, temporal templates and trajectory-based.
3D model-based approaches treat an object as a set of connected
parts and perform detections on their activities [1]. The activities can
be modeled as generalized action cylinders [2]. Temporal templates
use sequences of simple events as a prior to model more complex
events. Examples of temporal template methods are Petri Nets ([3])
and Belief Networks ([4]). Trajectory-based techniques perform
event detection by analyzing trajectories over certain time spans [5,
6]. Since events are generally composed of specific sequences of
operations, HMMs are appropriate to model such events [7]. HMMs
are also used to perform abnormal activity detection by modeling the
behavior of crowds [8]. The main limitation of the above mentioned
HMM-based techniques is the use of an evaluation strategy to obtain
sequences of events, as this results in a dependence on the selected
template.

When multiple cameras are available, a planar homography can
be used to wrap all views on a reference view of the ground plane,
on which graph matching can be used for tracking [9]. Similarly,
foreground pixels from each view can be projected on the ground
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plane before object segmentation. Next, tracking is performed using
connected component analysis and graph theory [10]. However, the
projection of the object points that are not on the ground results in
erroneous projections.

In this paper, we propose a general framework for video event
detection that is applicable on the image plane as well as on the
ground plane. Moreover, the proposed approach is applicable to
cameras with both overlapping and non-overlapping fields of view,
and operates with both calibrated and uncalibrated cameras. We seg-
ment objects in the video using a statistical color change detector and
track them over time using graph matching. Next we apply on the
tracked objects an object-centric state modeling based on a Contin-
uous Distribution Hidden Markov Model (CDHMM) [11]. Unlike
previous HMM-based event detectors ([12, 8]) that use the evalu-
ation strategy to model complex events (thus requiring a sequence
of simple events to be known a priori), we use a HMM decoding
strategy, which allows us to deal with unknown sequences of ob-
ject states, thus resulting in a more flexible event detector (i.e., not
dependent on a predefined template).

This paper is organized as follows. Section 2 and Section 3 de-
scribe object detection and tracking, and the proposed HMM-based
event detection algorithm, respectively. Experimental results are pre-
sented in Section 4. Finally, in Section 5 we draw the conclusions.

2. OBJECT DETECTION AND TRACKING

We decompose the event detection problem into four main steps: the
extraction of objects of interest in the image plane, the projection
of the mid-point object-ground intersections to the ground plane, the
tracking of the projected points on the ground plane, and the detec-
tion of events on the tracked objects. These steps are detailed below.

Let an object detection module [13] generate a set of R objects
Ot = {O1

t , O2
t , · · · , OR

t } at time t on image plane. Let P r(x, y, 1)
be the base mid-point of the bounding box in homogeneous coordi-
nates representing an object Or

t . P r(x, y, 1) represents the point of
intersection between an object and the main plane of the scene.

The problem is to find the point P̂ r(u, v, 1), projection of the
point P r(x, y, 1) on the world coordinates (i.e., the ground plane).
We project the detections from each camera on the ground plane
using homography [14]. Then P̂ r(u, v, 1) = H × P r(x, y, 1), for
each r, where H is a 3 × 3 homographic matrix.

Once the points P̂t = {P̂ 1
t , P̂ 2

t , · · · , P̂ R
t } are obtained for all

the R objects at time t, the next problem is to associate points be-
tween consecutive frames to establish the track Xr

t = {(P̂ r
t )} up

to time t of each object Or
t . The trajectory Xr

t is estimated with a
graph matching procedure ([15]) using the ground plane coordinates
as features in each node of the graph. The gain used for each arc
connecting the nodes is computed using the normalized Euclidean
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Fig. 1. Multivariate object-centric distribution model. The distribu-
tion of the states is placed on the line joining the objects centroids of
the objects

distance between the projected points. The normalization factor is
given by the variance of the coordinates on the plane. Note that when
the homographic projection is not used, the tracking is performed on
the image plane using the full set of object features presented in [15].
The next step is to identify the behavior of the tracked objects.

3. EVENT DETECTION

As event detection can be modeled as a random process that is seg-
mental in nature, the piecewise stationarity assumption of HMMs is
well suited for event modeling. Let λ = {A, bjt, ω} be a continu-
ous distribution first-order Hidden Markov Model, with A = {aij}
representing the state transition probabilities, bjt the emission prob-
abilities, and ω = {ω1, · · · , ωj} the events (states) to be detected.
The track Xr

t provides the observation of the object Or
t , i.e., the

emitting symbols of each state ωj at time t. For each object r we
compute the most likely hidden state sequence ωT up to time t as

ωr
j = arg max

i
[δr

i (t − 1)aij ], (1)

where δj(t) = maxi[δ
r
i (t − 1)aij ]bjt.

We model the emission probabilities bjt as a continuous multi-
variate distribution Nj(μ, Σ, ρ, C, D) with mean μ, covariance Σ,
weight ρ and range of uniform distribution [C, D], therefore

bjt =
ρ

(2π)
K
2 |Σj | 12

exp

(
K∑

k=1

[
(θk − μθk

)2

2σ2
θk

])
+

+
(1 − ρ)

π

K∏
k=1

[
ψθk

σθk

]
, (2)

where K=2; θ1=u and θ2=v on the ground plane or θ1=x and θ2=y
on image plane. Therefore σu and σv are the standard deviations
along the u and v coordinates, respectively. The second term ac-
counts for rapid change in probability after σ so that the HMM can
quickly move to the next state. The functions ψk are piecewise bi-
nary and defined as

ψu =

⎧⎨
⎩

1 if Cu < u < Du

0 otherwise
, (3)

and

ψv =

⎧⎨
⎩

1 if ζ(Cu) < v < ζ(Du)

0 otherwise
, (4)

Algorithm 1 Event Detection
ω = {ω1, ω2, . . . , ωl} : events (states that object can acquire)
aij : state transition probabilities between state i to l
μj : mean for each state j; Σj : covariance matrix for each state j
Xr

t : observation for object r at time t ; count : counter

1: for t = 1 to end do Compute: Xr
t

2: for j = 1 to n do Compute brjt :

3: br
jt = ρ

(2π)
K
2 |Σ|

1
2

exp

(∑K
k=1

[
(θk−μθk

)2

2σ2
θk

])
+

4:

+ (1−ρ)
π

∏K
k=1

[
ψθk
σθk

]
5: end for
6: count ← count + 1
7: if count = n then Initialize initial state ωr

0
8: if ω0 = −1 then ωr

0 ← φ(maxj=1...l br
jt)

9: where φ returns ωj corresponding to br
jt

10: end if
11: Apply Forward Viterbi Algorithm:

δ(t) = max
i

[δr(t − 1)aij ]br
jt

ωT
r = argmax

i
[δr(t − 1)aij ]

ωr
0 ← ωr

t

12: end if
13: end for

where ζ = ±σv

√
1 − (u−uc

σu
)2+vc , with (uc, vc) representing the

object centroid around which the model is built, and π
∏2

k=1 σθk
is

the area of an ellipse and [Cu, Du] is the range of uniform distri-
bution along the u-axis. |Σj | is the determinant of the covariance
matrix. Let Σj = diag[σ2

u, σ2
v], then |Σj | = σuσv in Eq (2).

The values of the elements in Σj depend on the state to be mod-
eled, whereas the value of μ is assigned dynamically. This is the key
point of the proposed object-centric modeling (Figure 1). The value
of μ of the first state is set as the centroid of the reference object
Oref

t on the ground plane. The object Oref
t is the object of interest

around which events are to be detected (e.g., the bag in case of unat-
tended baggage). The remaining state distributions are then placed
around Oref

t to estimate the possible state of Oref
t with respect to

the objects Or
t . The μ of the other states are positioned on the line

passing through the centroid of the two objects (Oref
t and Or

t ) at a
distance that is a function of the variances of the states to be detected.

The advantage of this HMM-based object-centric model is the
capability of incorporating any type of distribution to best model a
particular state. This makes the proposed approach flexible enough
to detect different events in various scenarios. Moreover, as the be-
haviors of objects in real scenarios are generally characterized by
fuzzy boundaries between different states, a progressive transition
from one state to another is preferred to a fixed threshold-based tran-
sition [16]. If computational time is an issue, it is possible to use in
the proposed framework a uniform distribution to model the states
with equal state transition probabilities among the states.

The estimation of the emission probabilities bjt using the pro-
posed object-centric approach completes the computation of the HMM
parameters. These parameters are now used to compute the most
likely state sequence ωT

k for each object r by applying the Forward
Viterbi algorithm every n observations. The last state ωn of the state
sequence is used as the initial state ω0 for next computation. The al-
gorithm of event detection using Forward Viterbi algorithm is sum-
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Object found Object unattended Warning : Object unattended from 30 secs Alarm : Object abandoned from 30 secs

Object found Object unattended Warning : Object unattended from 30 secs Alarm : Object abandoned from 30 secs

Fig. 2. Sample event detection results for the PETS 2006 dataset. (First row): Sequence S1, frames 1955, 2004, 2754 and 2790. (Second
row): Sequence S5, frames 2020, 2083, 2833 and 2890. The evaluation of the event detection accuracy is discussed in the text

marized in Algorithm 1.
To evaluate the event detection results, we estimate the accu-

racy, the precision and the sensitivity of the event detector. Let FP
be the number of false positive detections, TP the number of true
positive detections, and FN the number of false negative detec-
tions. Moreover, let GT be the frame number corresponding to an
event in the ground truth andAD the frame number identified by the
event detector for the same event. The accuracy gives an indication
of the frame-level performance of the algorithm, and is defined as
γ =

[
1 − |GT−AD|

NF

]
× 100, with NF representing the minimum

duration of an event. The precision is defined as TP/(TP + FP )
and the sensitivity is defined as TP/(TP + FN).

4. EXPERIMENTAL RESULTS

We demonstrate the performance of the proposed algorithm on stan-
dard event detection sequences from the datasets PETS 20061 and
ETISEO2. These sequences include indoor and outdoor scenarios
with pedestrians, vehicles, objects and their interactions. Examples
of events to be detected are unattended / abandoned baggage, enter
zone, inside zone, empty area and stopped object. The PETS dataset
contains good quality sequences (duration: 94 – 136 seconds). The
ETISEO dataset contains sequences of lower quality (duration: 40 –
64 seconds). Both datasets contain overlapping and non-overlapping
regions observed by multiple cameras.

In the PETS sequences, the baggages are detected based on their
size and aspect ratio (ranging between 1 and 1.8). For the attended
baggage (ω1) event, σu =

√
2 ∗ 36 and σv =

√
2 ∗ 96 respectively,

whereas for unattended baggage (ω2) and abandoned baggage (ω3)
the values are σu =

√
36/2 and σv =

√
96/2. These values are

based on the calculation that 1m in world-coordinates corresponds
in the ground plane to 36 pixels along the u-axis and to 96 pixels
along the v-axis3 (See Figure 1). A baggage is considered unat-
tended when its related object (the owner) is 2m away and aban-
doned when its related object is 3m away for at least 30 seconds.

1http://www.cvg.rdg.ac.uk/PETS2006/index.html
2http://www.silogic.fr/etiseo/index.html
3http://www.cvg.rdg.ac.uk/PETS2006/data.html

AP-11 BE-19 RD-06
C4 C7 C1 C4 C7

Precision 1.00 1.00 0.65 0.87 1.00
Sensitivity 0.56 0.50 0.65 0.35 0.25

Table 1. Event detection precision and sensitivity for 5 test se-
quences of the ETISEO dataset

Figure 2 shows sample event detection results on the sequences
S1 and S5 of the PETS 2006 dataset. The images show the detec-
tion of the object around which the model is built (first column) and
the subsequent sequence of events (a warning and an alarm). To
evaluate the results we computed the accuracy of the detection using
NF = 750 (30 seconds): for the sequence S1, the accuracy for the
warning event is 90.5% and for the alarm event is 92.9%; for the se-
quence S3, the accuracy is 100% for both events as there are no false
positives; for the sequence S5, the accuracy is 88.8% and 83.02%
for warning and alarm, respectively, and for the sequence S6 the
accuracy is 98.5% and 95.5%. The tracks resulting from multiple
object tracking (17 objects) on the ground plane are shown in Figure
3. The track highlighted in red corresponds to the object associated
to the baggage events.

Figure 4 shows detection results on the ETISEO dataset for the
enter zone, inside zone, stopped and empty area events. To demon-
strate the flexibility of the proposed framework, in this case event de-
tection is performed on the image plane. The green rectangle drawn
on the tarmac is the zone considered for triggering the events en-
ter zone, inside zone and empty area. The stopped event is detected
anywhere in the scene. Table 1 summarizes the precision and sen-
sitivity estimation for the results obtained on the ETISEO dataset.
The lower sensitivity of the algorithm is due to the fact that the
ETISEO scenarios require the classification of contextual objects,
feature that is not included in our current framework. The videos
with the results for object tracking and event detection are available
at http://www.elec.qmul.ac.uk/staffinfo/andrea/event.html.
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Fig. 3. Visualization of the ground plane tracks of 17 objects for the
PETS 2006 dataset (Sequence S3, Camera 3). The track of the per-
son classified as ’owner’ of the abandoned baggage is color-coded in
red. All the other tracks are in black

5. CONCLUSIONS

We presented an event detection algorithm for multiple cameras that
can be applied on the image plane as well on the ground plane. The
detected objects are tracked using graph matching before perform-
ing event detection using a Continuous Distribution Hidden Markov
Model combined with a Viterbi decoding strategy. This approach is
appropriate for the modeling of different types of events. Using a
decoding strategy (instead of the common evaluation strategy) en-
abled us to generalize the event detection approach by eliminating
the need of providing a fixed template of events to be detected. We
showed using standard datasets that the proposed approach is flexi-
ble enough to be used on the image as well as on the ground plane.
Current work includes the investigation of a classification step to en-
able the recognition of contextual objects in the scene.
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