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ABSTRACT 
 
Tracking 3D people from monocular video is often poorly 
constrained. To mitigate this problem, prior knowledge 
should be exploited. In this paper, the Gaussian process 
spatio-temporal variable model (GPSTVM), a novel dy-
namical system modeling method is proposed for learning 
human pose and motion priors. The GPSTVM provides a 
low dimensional embedding of human motion data, with a 
smooth density function that provides higher probability to 
the poses and motions close to the training data. The low 
dimensional latent space is optimized directly to retain the 
spatio-temporal structure of the high dimensional pose 
space. After the prior on human pose is learned, the particle 
filtering can be used tracking articulated human pose; parti-
cle filtering propagates over time in the embedding space, 
avoiding the curse of dimensionality. Experiments demon-
strate that our approach tracks 3D people accurately. 
 
Index Terms— Gaussian process, dimension reduction, 
machine learning, motion estimation, particle filtering 
 

1. INTRODUCTION  
 
Tracking 3D people from monocular video is a fundamental 
problem for human motion analysis in computer vision 
community. It has many important applications: video sur-
veillance, gesture analysis, advanced human computer inter-
face, etc. The task of 3D people tracking can be defined as 
follows: given the initial 3D people state in the first video 
frame, tracking algorithms will update the 3D people’s state 
continuously, given the successive frames. Due to the poor 
constraints caused by self-occlusions, ambiguities and im-
age measurement noise as well as high dimensional state 
space of human motion, prior models of the poses and mo-
tions should be exploited to enhance the tracker perform-
ance.  
While some powerful models of 3D human pose are emerg-
ing, what characteristics of a prior model are more suitable  
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Fig. 1 Overview of the tracking algorithm 

 
for tracking 3D people? Intuitively, a model that better en-
codes the sophisticated dynamics and the spatial information 
of human poses is demanded. Learning such a model is 
challenging because of the nonlinearity of human dynamics 
and the high dimensional human poses. 
      Some approaches modeling the sophisticated human m-
otion have involved parameterization of the human pose 
through nonlinear dimensionality reduction, using local geo-
metrical attributes of the high dimensional poses [1, 2]. 
While these methods yielding mapping from the pose space 
to the embedding space does not provide a probabilistic 
model over poses, nor a dynamical model. Thus the addi-
tional step is required to construct a dynamical model. For 
example, Agarwal and Triggs [3] learn a mapping from sil-
houettes to poses using relevance vector machine and a sec-
ond-order auto regression (AR) dynamical model. Though 
spatio-temporal isomap (ST-Isomap) handles the spatio-
temporal structure of the high dimensional data in the low 
dimensional space, it does not provide a probabilistic den-
sity model over poses, nor a mapping back from the latent 
space to the pose space [4]. 

The other approaches model the human poses prior in 
an embedding pose space based on probabilistic model. In 
[5, 6, 7, 8], locally linear coordination (LLC) [5] and Gaus-
sian process latent variable model (GPLVM) [6, 7] are used 
for tracking applications, but the embedding learned by 
LLC does not encode the dynamics of human poses, nor 
does GPLVM. In [8], Gaussian process dynamic model 
(GPDM) and a second-order Markov model are utilized for 
tracking. GPDM learn a non-linear embedding with an AR 
dynamics process in latent space [9]. However, the GPDM 
does not model the spatial relationship of high dimensional 
data. 
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This paper introduces a new model, Gaussian process 
spatio-temporal variable model (GPSTVM), for effective 
learning the motion prior for people tracking. The GPSTVM 
comprises a low dimensional latent space with associated 
spatio-temporal process. It provides more genuine embed-
ding of the human poses from both spatial and temporal 
perspectives. After the prior on human pose is learned, the 
particle filtering can be used tracking articulated human 
pose; particle filtering propagates over time in the embed-
ding space, avoiding the curse of dimensionality. The pre-
dicted human pose is projected onto image plane for meas-
urement. Fig.1 shows the tracking algorithm. 

 
       The remainder of the paper is structured as follows. The 
GPSTVM and the model result are presented in Section 2. 
In Section 3 we describe the particle filtering integrated 
with learned prior for monocular 3D people tracking. Ex-
periments are presented in Section 4. Section 5 concludes 
the paper and discusses future research work. 
 

2. GAUSSIAN PROCESS SPATIO-TEMPORAL 
VARIABLE MODEL 

The GPSTVM is obtained by incorporating the neighbor-
hood information as a hard constraint on object function 
during the training stage, and by modeling a first-order 
Markov process in the latent space as a smooth term.  

Firstly, we model a mapping from latent space d
tx  

to pose space D
ty ( d D ) with AR model and model 

dynamics with first-order AR model in latent space 
,( )t j j t y t

j
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1 ,( )t i i t x t
i

x b x n                                                     (2) 

where 1 2[ , ,...]A a a and 1 2[ , ,...]B b b are weight, j and 

i are basis function, ,x tn  and ,y tn are additive zero-mean 
white Gaussian noise.  

From Bayesian perspective, the specific forms of j , 
and the weights A  should be marginalized out. Marginaliz-
ing over j  and A can be done in close form [10] to yield a 
multivariate Gaussian data likelihood of the form: 

11 1( | , ) exp( ( ))
2(2 ) | |

T
YND D

Y

p Y X tr K YY
K

                  (3) 

where 1[ ,..., ,..., ]T
t NY y y y , 1[ ,..., ,..., ]T

t NX x x x , YK  is a 
kernel matrix. The elements of kernel matrix are defined by 
a kernel function, ,( ) ( , )Y i j Y i jK k x x  which are taken as 
common RBF for two coordinates x and x in latent space X . 
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where 1 2 3{ , , } comprises the kernel hyper parame-
ters that control the output variance, the RBF support width, 
and the variance of the additive noise ,y tn . 

Secondly, we propose to use the neighborhood inform-
ation of each point ty  in high dimensional space to model 
the spatial structure. For computational convenience, we as-
sume that all these neighborhoods are linear, i.e. each data 
point can be optimally reconstructed using a linear combi-
nation of its neighbors [11]. Hence our objective is to mini-
mize 

2|| ||
t

t tj jt j N
y w y                                        (5) 

where tN represents the neighborhood of ty , and tjw is the 
contribution of jy to ty . We further constrain 1

t
tjj N

w , 

0tjw . Obviously, the more similar jy to ty , the lager tjw  
will be. Thus tjw can be used to measure how similarity 

jy to ty . One issue should be addressed here is that usu-
ally tj jtw w . It can be easily inferred that 

2|| ||
t

i t tj jj N
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thus the reconstruction weights tjw in the low dimensional 
space can be solved by estimating the constrained least 
squares. 

Intuitively, the latent coordinates X should retain the 
spatial relationship of the high dimensional data. X is ob-
tained by minimizing the embedding cost function 

            2

1
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where M is given by 
tj tj tj jt kt kj

k
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here ij is 1 if i j and 0 otherwise. The cost function (7) 
can be viewed as hard constraint during optimizing the la-
tent coordinates.  

Thirdly, following [9], we model the dynamics in latent 
space. Incorporating the first-order Markov property and 
marginalizing out the parameters B and basis function i . 
The density over latent space reduces to 

   1
1 ( 1)
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X out outN d d

X

p X p x tr K X X
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where 2[ ,..., ]T
out NX x x , XK is the ( 1) ( 1)N N kernel 

matrix constructed from 1 1{ ,..., }in NX x x  [10]. Kernel XK  
uses common RBF for two data x and x in set inX : 
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2.1. Learning 
Learning the GPSTVM from posesY entails minimizing the 
negative log-posterior with hard constraint (7). Following 
[9], we adopt simple prior on the hyper parame-
ters 1( ) i

i

p , 1( ) i
i

p to discourage overfitting. To-

gether, the priors, the latent mapping, and the dynamics de-
fine a generative model for spatio-temporal series poses.  
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( , , , ) ( | , ) ( | ) ( ) ( )p X Y p Y X p X p p             (11) 
The latent coordinates and hyper parameters are found 

by minimize the negative posterior under the spatial hard 
constraint (7) 
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where reconstruction error is selected manually. We have 
experimented with Sequential Quadratic Programming 
(SQP) to solve the latent coordinates. SQP allows the use of 
hard constraints on the object function. However, hard con-
straints can only be used for underconstrained function, 
otherwise the system quickly becomes infeasible and the 
solver fails. A more general solution is to convert the con-
straints into soft constraints by adding a term 2|| ||TX MX to 
the objective with a large weight [12]. Thus, object function 
is changed into unconstrained optimization 

2

, ,
min (1 ) || ||T

X
L L X MX                        (13) 

We optimize the , ,X numerically with conjugate 
gradients. 
 
2.2. Model results 
The test walking sequence data comes from CMU motion 
capture data. It consists of 3 normal periodical walking. The 
dimension of data is 62. Our experimental setting is as fol-
lows. is equal to 0.85, and the reconstruction error is 
equal to 2. The latent coordinates are initialized with PCA.  
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Fig. 2 Latent space of 3 walking sequences with differ-

ent styles and speed. (a) GPDM, (b) GPSTVM.  
 
Fig. 2 shows the latent space of 3 walking sequences 

with different styles and speeds; different color represents 
the different walking sequence. Note that the latent trajecto-
ries in Fig. 2(a) illustrates that GPDM produces fragmental 
latent space. Fig.2 (b) shows that GPSTVM produces a 
smooth configuration of latent positions. Spatial constraint 
term in object function explains it. Fig. 2 also shows a visu-
alization of the inverse reconstruction variance, i.e. 

| , , ,2ln y x X Y . This shows the confidence with which the 
model reconstructs a data from a latent position x . Brighter 
colors correspond to lower variances; this indicates more 

reliable reconstruction from latent space. Thus, GPSTVM is 
more reliable than GPDM during mapping from latent space 
to original pose space.  
 

3. TRACKING  
 
In the application to 3D people tracking, we use particle 
filtering [15] integrated with the GPSTVM for tracking task. 
At each time instance t , the complete body pose is con-
trolled by a state vector ( , )t t ts P x . tP  represents the global 
position of the body, and tx  is the point in latent space.  

We manually initialize the 3D position tP  and 3D 
pose 0y . Given 0y , the initial latent points 0x  can be ob-
tained by minimizing the following likelihood function [12], 

2
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                      (14) 

where 1( ) ( )T
Y Yf x Y K k x , 2 1( ) ( , ) ( ) ( )Y Y Y Yx k x x k x K k x .  

( )Yk x  is a vector with elements ( , )Y jk x x for all other latent 
points jx  in the GPSTVM.  

We model the dynamics as second-order AR model. W- 
1 1 , (0, )t t t t tx Ax Bx Cv v N                        (15) 

here the matrices A , B , C  and defining the dynamics are 
learned form motion capture data; more detail on how to 
learning the parameters can be found in [14]. To compute 
the measurement for the current prediction, first the silhou-
ette of the current video frame is extracted through back-
ground subtraction, and the chamfer matching cost between 
the projected model and image silhouettes is considered to 
be proportional to the negative log-likelihood [13]. We use 
the same human model proposed by [13], which consists of 
a group of cylinders. 

The Particle filtering based on the GPSTVM prior will 
be described in Algorithm. 1. 

 
Algorithm. 1 Particle filtering based on GPSTVM 
1. Initialization: manually initialize 3D pose and calculate 

the latent coordinates 0x through Eq. 14 
2. Prediction: sample tx  through dynamics defined by Eq. 

15 
3. Measurement: first map the samples tx into correspond-

ing pose ty ; second project the 3D pose ty onto image 
plane for measurement and evaluate the samples weights. 

4. Output: predict current pose. 
5. Resample particles and go to step 2 

 
4. EXPERIMENTAL RESULTS 

 
The proposed algorithm has been tested in tracking walking 
humans. The test set, calibration information and ground 
truth are obtained from [13]. The test set has four image 
sequences, captured by four synchronized cameras from 
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different viewpoints. The challenges of the test set in track-
ing include large motion, motion blur, loose clothing and 
self-occlusions.  

In the experiments, we use only one of the sequences, 
and maintain the 2 dimensional latent pace and 200 particles 
for our algorithm. One training data from motion capture 
data has 400 frames with 28 freedoms. We compare our 
algorithm against: (1) annealed particle filtering [16] and (2) 
particle filtering. We set annealed particle filtering with 10 
layers, 100 particles per layer and four synchronized image 
sequences simultaneously for measurement. All algorithms 
run on a 3.0 GHz PC with 512 MB RAM under Matlab. Our 
tracking algorithm takes approximately 3 seconds per frame, 
while the annealed particle filtering and particle filtering 
take approximately 120 seconds per frame. 
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Fig. 3   Estimation error of 3 tracking algorithms 
 
Fig. 3 shows the accuracy of the different tracking al-

gorithms. As proposed in [13], the error is measured as the 
absolute distance in millimeters between the ground truth 
and estimated marker positions on the body limbs. As can 
be seen in the graph of Fig. 3, our method is consistently 
more robust. Based on the performance reported in [13] (up 
to 50 frames), our algorithm can track the walk motion 
longer and more accurately. The error increases rapidly after 
the 80-th frames, since the people changes his motion style 
into ‘turn left’  and we do not model this motion prior for 
tracker. 

 
Fig. 4 Experimental results for monocular tracking 3D 

people. Visit website: 
http://www.jdl.ac.cn/user/jbpang/GPSTVM.htm for video. 

 
Due to the limitation of space, Fig. 4 just illustrates the 

example tracking results. We can see that our approach 
tracks the walking straight successfully. In some frame, 
global position estimation error causes the pose estimation 

failure, for instance, the 60-th frame. Smarter sampling 
method or more particles will make up it. 

 
5.  CONCLUSIONS 

In this paper, we have proposed an algorithm to track 3D 
people accurately, despite the self-occlusion and the noisy 
image measurements. Our main contribution is focused on 
GPSTVM, a novel model for learning human motion prior. 
Currently we only learn the walk prior. Essentially different 
motions can be learned using GPSTVM; hence more com-
plicated motion can be tracked using same algorithm. In 
future, how to deal with the transition of different motion 
should be carried out. 
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