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ABSTRACT

This paper describes a method for articulated upper body track-

ing in monocular scenes. The compatibility between model

and the image is estimated using one particle filter for each

limb and the compatibility between limbs is represented by

interaction potentials. The joint probability is obtained by

belief propagation on a factor graph. The body model is a

loose limbed model including attraction potentials between

adjacent limbs and constraints to reject poses resulting in col-

lisions. Robust compatibility functions based on face color,

edges and motion energy are used to evaluate the likelihood

of the generated hypotheses. Experimental results show the

upper body tracking efficiency of the proposed algorithm.

Index Terms— Belief propagation, factor graphs, particle

filter, tracking

1. INTRODUCTION

Algorithms for body tracking must cope with non linear and

high dimensional space in which the joint probability function

is highly multimodal and sharp. In this context, deterministic

methods can track in real time with stereo cameras [1], but

they may fail for monocular view because of many local op-

timums due to ambiguities in monocular scenes [2]. In this

context, learning based methods imply huge data bases even

if robust locally-weighted regression between candidate poses

is used [3]. To speed up the selection of a subset of learned

nearest neighbors, the comparison process uses locally sensi-

tive hashing and Hamming distance. Another approach con-

sists in associating deterministic optimization and a learned

base of poses [4]. The comparison between a test image and

the learned base aims to initialize the optimization process

near the modes of the likelihood. Learning based methods

may fail owing to the wide pose space and to external param-

eters (clothing, hairstyle...). Stochastic algorithms are useful

in monocular vision to resolve ambiguities resulting from 2D

to 3D pose inference. In this case, a multi-hypothesis algo-

rithm, such as particle filtering [5], is attractive but the high

dimension of the pose state complexifies the solution. A key

to this problem is to use a loose-limbed body model [6] where

the likelihood of each limb can be evaluated independently. In

Fig. 1. Multicues tracking using belief propagation and factor

graphs. Left to right and top to bottom: initialization image

for background subtraction, current frame, estimated pose, fu-

sion of contour distance map and robust background subtrac-

tion, motion energy distance map and face color map.

this manner, a particle filter can be associated with each limb

reducing the search space dimension to the number of dof of

a limb [7]. Influence between limbs are taken into account by

propagating limbs’ likelihoods through a factor graph using

belief propagation. A similar technique is used in monoc-

ular scenes [8] with only motion energy as cues. Another

approach uses edges and grey level with Mean Field Monte

Carlo [9]. In this paper, the number of cues is increased to

enhance the robustness of the tracking. Particle filters and

belief propagation are used [7] to simplify the problem by

computing the estimation in a discrete space instead of us-

ing, for example, Gibbs sampler in a continuous one [6]. This

paper presents a monocular multicues tracking algorithm us-

ing a loose-limbed body model and particle filters interacting

through belief propagation on a factor graph.

2. RECURSIVE BAYESIAN TRACKING FOR
ARTICULATED BODY

The upper body is modeled by a graph including M limbs

represented by nodes and links corresponding to articulations

or non collision constraints between limbs (see figure 2). Ba-

sically, a Markov network can be used to represent this struc-

ture but the non-collision constraints between the head and
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Fig. 2. Upper body model. Left: nodes correspond to

limbs, articulation constraints are represented by solid lines

and dashed lines are additional non-collision constraints be-

tween head and hands. Right: cardboard 2D body model.

the hands generate a three nodes clique. A factor graph is con-

structed to simplify the model by using only pairwise depen-

dences represented by factors [7]. The joint probability can be

decomposed as products of these factors. The complete graph

includes the previous states to take into account the tempo-

ral coherence (see figure 3). Given a limb μ, its state Xμ
t at

time t and the image observations Y μ
t , the model parameters

are the observations compatibility potentials φμ(Xμ, Y μ), the

time interaction potentials τμ(Xμ
t , Xμ

t−1), and the interaction

potential for the link between limbs μ and ν: ψμν(Xμ, Xν).
Adopting these notations, the joint probability knowing all the

observations from time 0 to K is:

P (X0:K |Y0:K) =
K∏

t=0

Φ(Xt, Yt)Ψ(Xt)
K∏

t=1

T (Xt, Xt−1) ,

(1)

with:

• Φ(Xt, Yt) =
∏M

μ=1 φμ(Xμ
t , Y μ

t ),

• Ψ(Xt) =
∏
(μ,ν)∈Γ ψμν(Xμ

t , Xν
t ), where Γ is the set

of links,

• T (Xt, Xt−1) =
∏M

μ=1 τμ(Xμ
t , Xμ

t−1).

The marginal probabilities of the limbs state are obtained

using the belief propagation algorithm on a factor graph [7].

As the graph includes cycles, the obtained marginal is an ap-

proximation of the true one. This approximation further de-

pends on the messages update order. To simplify the algo-

rithm, the messages are propagated to all nodes in the same

frame for a fixed number of iterations (10 in our case) and

then propagated only once from a frame to the following one.

Therefore, the estimation of a marginal at any time t does not

depend on the observations after time t, and the estimation of

the marginals can be computed recursively.

The messages are represented by sets of weighted sam-

ples. From one frame to the next, they are calculated using

Fig. 3. Factor graph at time t. Circles corresponds to variable

nodes (limb states) and black squares to function nodes (tem-

poral coherence Tμ and interaction or non-collision potentials

ψμν). For clarity, only two consecutive frames are shown and

the function nodes corresponding to the observations Y μ are

omitted.

a particle filter scheme consisting in a re-sampling step fol-

lowed by a prediction step based on the time coherence func-

tions. The loopy belief propagation algorithm is then reduced,

for the current frame, to a loopy propagation algorithm for

discrete state spaces, the space state for each limb being re-

stricted to its samples. Moreover the marginal probability is

then simply represented as a weighted sum of the same sam-

ples. In this manner, a full recursive estimation is obtained.

The algorithm is equivalent to a set of interacting particle fil-

ters, where the sample weights are re-evaluated at each frame

through belief propagation to take into account the links be-

tween limbs. This algorithm is relatively fast because con-

trary to [9], samples are drawn only once for each frame t.
Moreover, unlike [6], the image based compatibility functions

φμ(Xμ
t , Y μ

t ) have to be evaluated only once for each sample

and the link interaction potentials only once for each pair of

samples for all connected limbs.

3. APPLICATION TO UPPER BODY TRACKING IN
MONOCULAR SCENES

The model is applied to articulated upper-body tracking using

monocular color images from a webcam. Color is used to

track the head and the hands and the grey level image is used

to detect motion and compute contour based cues.
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3.1. Initialization

An accurate face detector [10] is used to detect the face in the

color image. Once detected, the starting pose supposes that

arms are along the body with the torso vertical and facing the

camera. The tracker can easily recover the real pose as long

as it is not too far from this hypothesis. The detected face is

also used to initialize a face color histogram.

3.2. 2D body model and Link interaction potentials

The 2D body model is shown in figure 2 right. Head and

hands are represented by circles and rectangular patches are

used for torso, arms and forearms. Limbs and limbs’ edges

are discretized using respectively a grid of points inside them

and regularly distributed points around them. A Gaussian

of the distance between two link points is used to compute

the link interaction potentials (see figure 2 for distances Dh,

Ds, De, Dw). This Gaussian is zero centred for the shoulder-

arm and arm-forearm joints, and on a reference distance for

the head-torso and forearm-hand joints. Another constraint

is added giving zero potential for angles θh , θw (see figure

3) above a fixed threshold. Three additional links are defined,

which simply give a zero probability to solutions where hands

and head intersect.

3.3. Time coherence function

The time coherence functions Tμ(Xμ
t , Xμ

t−1) are simple Gaus-

sians, independent for each parameter, centred on the value in

the previous frame. For forearms and hands, which can move

fast and rapidly change speed, the time coherence functions

are a mixture of two similar Gaussians, one centred on the

previous parameter and the other centred on the prediction of

the current parameter using previous limb speed. The stan-

dard deviation is chosen to be 10 cm for hands positions, and

5 cm for other positions. For angles, the standard deviation is

set to π/8.

4. IMAGE FEATURES

The image compatibility functions φμ(Xμ
t , Y μ

t ) are computed

from scores Sμ
f representing the compatibility between a limb

μ and cues f extracted from an image. Contrary to stereo [7],

monocular images needs more cues to reach a sufficient level

of robustness. Thus, multicues contour and color based terms

are fused to provide a score: Sμ =
∏

f Sμ
f . Considering the

highest score for all samples of the limb Ŝμ, the image com-

patibility function is: φμ(Xμ
t , Y μ

t ) = exp[−λ(Ŝμ − Sμ)],
with λ a parameter that depends on the range of the values

returned by each cue.

Fig. 4. Left to right and up to bottom, estimated error for the

positions of torso, right shoulder, right elbow and right wrist.

Elbow position computed using plain contour cue (dot line,

mean = 3.0cm) is less accurate than the one computed using

the orientation contours §4.2 (solid line mean = 1.9 cm).

4.1. Face and hands detection

Considering the head position detected during initialization

step (§ 3.1), a color model is provided computing the UV his-

togram of the head color from the Y UV color space. During

tracking, the points belonging to the head and the hands are

compared with this model to evaluate their color compatibil-

ity. This score is completed with the Chamfer distance from

contours provided by a Shen-Castan detector: the pixels cor-

responding to the projection of the points belonging to the

hands model and head edges are scored computing the Gaus-

sian of this distance. To avoid taking into account background

contours, a robust background subtraction [11] is applied be-

fore contour detection.

4.2. Torso, arms and forearms detection

A more accurate contour based score can be estimated if the

orientation of the contours are taken into account. A local

squared area is defined on the center of a projected edge limb

point. A pixel p belonging to an area Ze is weighted by the

contour magnitude ‖−→p ‖ and a Gaussian spatial kernel Ge

centered on the limb edge point pe. For each pixel, the Gaus-

sian difference between the limb and the contour orientation

Gθ is computed:

Sor =
∑
pe

∑
p∈Ze

M(‖−→p ‖)Gc[d(p, pe)]Gθ[θlimb − θp] , (2)

where d() refers to the Euclidian distance and M() is a func-

tion that penalize low and high magnitude contours.

To avoid limbs getting stuck in a possible wrong static

configuration, a motion attraction term is added. A motion

energy distance map is computed with the Chamfer distance

from an adjacent frame difference. A motion energy score
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Fig. 5. Tracking results. Upper line: original frame, bottom computed front pose. In sequence 1, frame 3 is an initialization

image. Frame 65 in sequence 2 shows a wrong right elbow position due to the position of the right arm in front of the torso of

the same color. The last image shows a correct result even when the body is out of image plan rotation.

Smo is computed summing the energy distance εmo of each

pixel pi corresponding to the projection of the points inside a

limb. If Δpi = d(pt−1
i , pt

i):

Smo =
∑
pi

[1− Gmo(Δpi)]εmo(pi) +
Gmo(Δpi)

εmo(pi) + 0.1
(3)

The Gaussian kernel Gmo models the link between the inter-

frame energy motion and the limb displacement.

5. EXPERIMENTAL RESULTS AND CONCLUSION

The system was tested on sequences grabbed with a web-

cam. Quantitative results (see figure 4) were obtained for a

sequence comparing the estimated pose with a ground truth

provided by a magnetic motion captor. This sequence shows

a person executing gestures in front of the camera (see fig-

ure 5, frames 3, 70 and 250). For the torso and the shoulder

position, the error stays below 5 cm and 10 cm for the el-

bow. Results are less accurate for the wrist because the hand

model is too coarse. In some cases, for example when the

wrist goes out of the sleeve shirt, the hand model, a rigid cir-

cle (see § 3.2), does not correspond to the hand shape and the

estimated hand position moves along the wrist. The pinhole

camera model used to convert 3D points to pixels coordinates

is very coarse and can explain part of the obtained errors. In

frame 250, another person enters the scene. The system is not

distracted in spite of numerous false positives on image cues

(figure 1). The edge orientation cue (§4.2) provides a mean

error for the test scene of 1.9 cm instead of 3.0 cm, the mean

error resulting from plain edges cue.

The second tested sequence (see figure 5, frames 22, 36,

47, 65 and 94) shows challenging poses with rapid motion. In

frame 65, the right arm is positioned in front of the torso of

the same color and it does not produce enough cues to find

the correct position.

The algorithm speed is around 3 fps on a bi-processor 3.4

GHz. Real-time can be reasonably reached using threads in

the source code. Projected future works will include a more

accurate 3D model to track the body in 3D including a learn-

ing base for occluded poses.

6. REFERENCES

[1] D. Demirdjian, T. Ko, and T. Darrell, “Constraining hu-

man body tracking,” in ICCV. 2003, pp. 1071–1079,

IEEE Computer Society.

[2] C. Sminchisescu and A. Telea, “Human pose estimation

from silhouettes - a consistent approach using distance

level sets,” in WSCG, 2002, pp. 413–420.

[3] G Shakhnarovich, P. Viola, and T. Darrell, “Fast pose

estimation with parameter-sensitive hashing,” in ICCV.

2003, pp. 750–757, IEEE Computer Society.

[4] D. Demirdjian, L. Taycher, G. Shakhnarovich, K. Grau-

man, and T. Darrell, “Avoiding the ”streetlight effect”:

Tracking by exploring likelihood modes,” in ICCV,

2005, pp. 357–364.

[5] M. Isard and A. Blake, “Condensation – conditional

density propagation for visual tracking,” IJCV, vol. 29,

pp. 5–28, 1998.

[6] L. Sigal, S. Bhatia, S. Roth, M. J. Black, and M. Isard,

“Tracking loose-limbed people,” in CVPR, 2004, vol. 1.

[7] O. Bernier and P. Cheung-Mon-Chang, “Real-time 3d

articulated pose tracking using particle filtering and be-

lief propagation on factor graphs,” in BMVC, 2006,

vol. 01, pp. 27–36.

[8] J. Gao and J. Shi, “Multiple frame motion inference

using belief propagation,” in FGR, 2004, pp. 875–882.

[9] Y. Wu, G. Hua, and T. Yu, “Tracking articulated body

by dynamic markov network,” in ICCV, 2003, pp. 1094–

1101.
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