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ABSTRACT

Algorithms for probabilistic visual tracking hypothesize a distribu-
tion of the target state (location, scale, etc.) at every tracking step
with an associated information content or equivalently, an uncer-
tainty. One measure of this uncertainty is the differential entropy.
In this paper, we present a unified way to approximate the differ-
ential entropy of tracking distributions, which then makes it suit-
able, among other factors, for a qualitative assessment of both deter-
ministic and sequential Monte Carlo simulation based tracking algo-
rithms. We then illustrate the usefulness of this assessment measure
via tracking an object by choosing a set of randomly picked features
on it, each individually tracked, removed according to an uncertainty
analysis and replaced randomly, without any aid of a feature selec-
tion algorithm as in current use.

Index Terms— Visual Tracking, Probabilistic Filtering, Differ-
ential Entropy, Randomized features

1. INTRODUCTION

Any visual tracking algorithm, at every tracking step, in one way or
another, relies on a search mechanism. The search is either determin-
istic, centered on the previous tracked state (location, scale, velocity
or other parameters that make up the state vector), as for instance,
in template based tracking or a random walk conditioned on the pre-
vious tracked state, as in sequential Monte Carlo based approaches.
At each point in the search space, a quantitative measure of simi-
larity is evaluated, which primarily compares the proximity of the
search point to the target in an appearance or descriptive space. This
ensemble of search points, together with their associated similarity
measure or weight, forms the distribution of the tracked state (the
term tracking distribution is also used interchangeably). From this
distribution, a statistical inference is drawn about the tracked state.
Each distribution can be associated with quantitative information
content. This information is the measure of uncertainty about the
tracked state. The behavior of this uncertainty measure, over the
series of tracking steps, is indicative of the tracking performance.
Intuitively, increasing uncertainties over the tracking steps indicate
that it is with low confidence that the tracking algorithm infers the
tracked state from the hypothesis.

Several intuitive measures of uncertainty can be drawn from a distri-
bution. The modal point is ubiquitous [1], but nevertheless invariant
to the spatial structure (uniformity and spatial extent) of the distribu-
tion. The variance or covariance [2], is another measure, frequently
employed to quantify the effective spatial extent of the hypothesis,
but except in a few cases (the Gaussian distribution is an example),
they are not indicative of the non-Gaussianity [3] of the distribution.
For example, a uniform distribution and a Gaussian distribution can
be made to have the same variance (covariance) over the same finite
support. The variance measure is unable to capture the form differ-
ences in the distributions. But intuitively, the uniform distribution is

1-4244-1437-7/07/$20.00 ©2007 IEEE

more uncertain than the Gaussian, as a consequence of its flatness.
It is clear then, that the uncertainty measure should be indicative of
both the form and spatial extent of the distribution. This leads us to
investigate an information theoretic quantity.

The information-theoretic quantity we primarily investigate as an
indicator of tracking performance is the differential entropy of the
tracked state [4] (The state in this paper is taken to be the location of
the object). This choice is motivated by two reasons. First, this quan-
tity is a measure of the spatial structure of a probability distribution
[3]. Secondly, it is amenable to usage, via tractable approximations,
in a probabilistic filtering framework and importantly, it can also
quantify information exchange for fusion algorithms.

Before the differential entropy of the tracked state can be measured
in either class of trackers, it is important to see how deterministic
tracking may be viewed in a probabilistic filtering framework, which
practically allows the two classes of trackers to be analyzed uni-
formly. We dedicate Section 2 of this paper to this question. Build-
ing on this, in Section 3, we derive approximations to the differen-
tial entropy of the tracked state using the filtering framework. With
these approximations, in Section 4 we construct a stand-alone object
tracker influenced by its performance analysis. We term this tracker
the randomized feature-tracker. We provide experimental results of
tracking in complex scenes and discuss the differentiating properties
of this tracker in Section 5. We draw conclusions in Section 6.

2. DETERMINISTIC TRACKING: A PROBABILISTIC
VIEWPOINT

A tracker, in either of the two broad classes, can be modeled as a
processing box at every tracking step with data and other priors at
the input and a resulting tracking distribution at the output. The
tracking distribution in probabilistic tracking is the posterior distri-
bution, while in deterministic tracking, it could, for instance, be a
normalized correlation surface arising from template matching or a
distribution of feature matched points and match weights in a feature
matching scheme. The key idea behind the unification principle is
to bring about a way to cast characteristically different tracking dis-
tributions as approximations to probabilistic posterior distributions.
We discuss this idea below.

The following definitions will be frequently encountered in the rest
of this paper.

zo:x: The tracked state trajectory up to tracking step k. The state
here is the location of the target on the two dimensional image grid.
z1:5: The data or image sequence up to tracking step & .

P (’Zc‘l} : ) : The posterior distribution of the tracked state given the
data up to time k.

In Sequential Monte Carlo (SMC) approach, the posterior distribu-
tion is approximated by a set of samples and corresponding weights

{xh. 1, wi Y1 as follows.

P (@) ~ S wid (w0 - wha) 1)

Z1:k
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Assuming a first order Hidden Markov Model (HMM) structure for
the state space model, the principle of importance sampling is in-
voked to derive a recursive form of weight evaluation as given below
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is the importance sampling density.

This weight recursion in eqn.(2) is the starting point to cast the out-
put tracking distribution of a deterministic algorithm, for example
a correlation surface arising from template matching, as an approx-
imate posterior distribution. The arguments we put forth for this
consideration are as follows.

First, we choose the template matching scheme as a representative
algorithm from the deterministic class of trackers. Secondly, in ac-
cordance to this scheme, we consider the sample index in eqn.(1) as
a location index on the search space for template matching.

In the template based tracking scheme, the search for the template at
any tracking step is centered on the inferred location of the template
in the previous step. Hence, the terms in the weight proportionality
in eqn.(2) can be indexed as follows.
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Notably, the index on the previous state x,—1 is removed. This op-
eration resembles the resampling procedure used in SMC filtering.
In this case, resampling the distribution at the instant £ — 1 results
in representing the distribution by a single Kronecker-delta at the es-
timated location xx_1. The reader must note that we use the same
representation for both the estimated location and the random vari-
able representing the state.

For the sake of tractability in SMC filtering, the importance sam-
pling density in eqn.(3) is usually taken to be the Markovian prior as

follows; _ )
x; )
q (7’“ ) =p < : ) : )
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In the template tracking scheme, if we denote S (xk_ 1) as the search
area centered on the Kronecker-delta at the estimated location zx—1,
then we can define the Markovian prior as follows.

wj,_1,1<i< N 3)
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Bearing upon such a prior, the weights after resampling, are just
proportional to the likelihood distribution,

w;;o<p<z—’j),1§i§N. 6)
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These weights, after normalization, result in the following probabil-
ities; )
wy,
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We then have the required approximation of the posterior distribution
as;
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From eqn.(8) above we can derive an approximation for the instan-

taneous filtering distribution p (%) at time k as follows;

p (ﬂ) = /p (M) dwos_1 ~ DN @6 (a:k - xk) )
Z1:k . Z1:k

Retracing the last few steps, we see that the likelihood distribution
in the context of template based tracking is proportional to the un-
normalized correlation surface (in the sense of a probability distribu-
tion). Therefore, we can consider the normalized correlation surface
as an approximation to the filtering distribution of the tracked state.
In the preceding arguments we have established a consistency be-
tween deterministic tracking and SMC filtering. The consequence
is that, it makes it possible to treat both classes of algorithms uni-
formly for further analysis of their performance based on the differ-
ential entropy of the filtering distribution. In the following section
we estimate the differential entropy of the tracked state.

3. DIFFERENTIAL ENTROPY OF THE TRACKED STATE

In the rest of the paper the terms entropy and differential entropy are
used interchangeably.

The conditional entropy of random variable X, conditioned on sev-
eral random variables {Z1.x } is defined below for convenience [4].

h (&) = — /p(zl;k) /p (&) Inp <&> dzrdzi.k
Z1:k Z1:k Z1:k

(10)

In eqn.(10) we are required to evaluate the integral over the space

of all possible data (all possible image sequences), which is not

tractable. But, in practice the image sequence data is given sequen-

tially and the filtering distribution is only inferred (this is similar to

evaluating probability likelihoods, wherein the event has already oc-

curred and the probability of a particular outcome is sought). There-

fore, p (z1.1) degenerates to a Dirac-delta function at z7.;,, the given
data sequence:

p(z1:1) = 8 (216 — 211) (11)

From this tractability assumption in eqn.(11) above we reduce the
computation of the entropy to the following expression.

h(&) :_/p(mj >1np(xT’“) doy  (12)
21:k 21k 21k

The starting point to approximate the entropy above is the weighted
approximation of the filtering distribution in eqn.(9). We consider
this weight distribution as an approximation of the continuous fil-
tering distribution. We then construct approximations of the contin-
uous marginal filtering distributions in each dimension (here two).
For convenience we denote these marginals as f,, and fz,.,.

For densities f.,, and f.,, we approximate their respective en-
tropies h.,, and h.,, using the techniques presented in [3]. Making
the worst case assumption that the variables in each dimension are
independent, we arrive at a numerical approximation of the entropy
in eqn.(12) as follows:

h (L’“) ~ s + hayy - (13)

Z1:k

In the above steps we dealt with the differential entropy of the tracked
state within a SMC approach. In the next section, we develop a full
fledged tracker influenced by the time series behavior of its differen-
tial entropy.



4. RANDOMIZED FEATURE TRACKER

In the starting frame of a test color sequence, we mark the object to
be tracked by a bounding box. Inside this bounding box, we choose a
fixed number M coordinate locations using a uniform random num-
ber generator. Each of these coordinates form the centre of a feature.
The appearance model (template) of each feature is an image patch
of a preset size around its centre. We note that none of the templates
are allowed to exceed the physical limits of the bounding box. Fur-
ther, we associate each feature with an object reference vector con-
necting its centre to the centre of the bounding box (which is taken
to be the object centre). Therefore, we have the set of templates and
their corresponding reference vectors {7}, 7;}}Z,. Given this initial
configuration, the step wise tracking procedure described below is

iterated.
1. Approximating the continuous filtering distribution from

M features
From time step k — 1 to k, k > 1, we track each feature indi-
vidually using a standard normalized cross-correlation scheme.
The resulting set of correlation surfaces are denoted as {C} } ?il.
The unnormalized weights in eqn.(6) are computed as fol-
lows: )
wi o¢ 5351 [C5 + 73] (§) (14)

From eqn(14) and eqns.(7,9) we arrive at the required approx-
imation. Using this approximation we compute the entropy of
the filtering distribution (See Section 3) and record it in a time
series [h1, ha ... hg].

2. Feature rejection and residual resampling
At tracking step k : k > 1, we perform the following test.
If, |hx — hi1| > 7, where T is a preset threshold.
then, attempt to reject and resample features.
else, retain the feature set.
Rejection: The translation vectors (from step k — 1 to k)
of the features are clustered in the two dimensional motion
space and outliers discarded. The filtering distribution is re-
approximated using the correlation surfaces of the inliers.
Resampling: The feature set is replenished by sampling new
feature locations from the filtering distribution and associat-
ing templates (surrounding image patches) to each.

3. State estimation
The state at step k : xj, is estimated as the mean of the approx-
imate filtering distribution. The reference vectors {r; }?;
are then re-estimated given the state estimate.

To summarise the preceeding procedure we present a flow chart of
the proposed tracking approach in Fig.(1).

In the next section we present experimental results of the pro-
posed scheme alongwith discussions.

5. EXPERIMENTS AND DISCUSSIONS

In all the experiments 8 features were used. The template size for
the features were chosen to be 21 x 21 pixels and the search area
for the features were 61 x 61 pixels. The threshold for rejection and
resampling was empirically set at 0.1 nats (natural logarithm). The
test video sequences were cinema sequences with human heads and
aerial videos of moving vehicles from the PETS 2005 database [0].

We now present results of head tracking with the randomized feature-
tracker and the corresponding time series recording of the entropy
in Figs. 2 and 3 respectively. We have chosen the sample frames
above to draw the readers attention towards the particular ability
of the algorithm to handle out of the image plane motions and ex-
treme illumination changes (See Figs. 2(d),2(e),2(f),2(g)). It is also

Proposed Tracking Scheme

)
v

At step k: Set of M templates
are tracked from one frame to
the next using normalized
cross correlation

y

Approximate the continuous
filtering distribution

v

Approximate the differential
entropy of the filtering
distribution: h(k)

v Feature
Y - .
IfIh(k) -h(1)] > T~ | Rejsiztlon
¢ No Clustering
v
‘ State Estimation }<— Residual

i Resampling

D,

Fig. 1. Flow Chart of the Randomized Feature Tracker
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Fig. 2. Randomized Feature Tracking on the Snakeeyes sequence.
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Fig. 3. A time series plot of the differential entropy of the tracked
state

informative to observe the corresponding entropy increase at these
phases(See Fig. 3).

At any point in the tracking sequence, each of the M features pos-
sibly have a different age than the rest: meaning, some features
have their associated templates from the distant past, some relatively
new and the remaining absolutely new. This mixture of templates is
richly diverse and is a key ingredient in this tracking scheme. The
novelty here is that, neither is it necessary to arrive at a single, com-
plex, combined appearance model, for instance via a linear combi-
nation of appearance models from various instants in the tracking
sequence nor perform template adaptation for each feature. Instead,
the same or superior results can be obtained by a self adaptive set of
age variant appearance templates.

Apart from the appearance adaptability of this scheme, two other
differentiating factors exist in its favor. The first is the conspicu-
ous absence of a feature selection or extraction scheme, as in current
research [7]. Such selection algorithms are usually plagued by non-
repeatability of selected features in successive frames. Further, these
schemes only tend to qualify image patches with high gradient as the
best features. But from these experiments, it is often seen that even
visually smooth templates are good contenders for tracking. The
second is that unlike feature tracking schemes using KLT like track-
ers [7], the numbers of features required are very few (usually not
more than 10).

The primary limitations of this scheme are the absence of an oc-
clusion handler (the occlusion though is clearly captured by a large
increase in the entropy. See Fig. 3) and the presence of drift in the
state estimate due to aggregation of the features over time. The drift
aspect is highlighted in the result samples shown in Fig. 4.

6. CONCLUSIONS

Every characteristically different tracking scheme, say template based
tracking or SMC filtering has its well known inherent limitation. It
is expected that a mutually beneficial combination of these differ-
ent schemes would result in robust tracking. In this large context
of information fusion lies the objective of this contribution, which
primarily was to bring forth a methodology or framework to study
tracking performance. The framework relied upon casting track-
ing distributions as Monte Carlo approximations of filtering distri-
butions. Once cast, it was then possible to assess different tracking
strategies using a common measure. Towards this end, an information-
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Fig. 4. Randomized Feature Tracking on a PETS 2005 sequence.

theoretic measure of performance was chosen based on its natural
properties and convenient usage approximations. The quality assess-
ment measure was then put to test on a novel strategy of randomized
feature tracking and conclusive results presented. The limitations
of the randomized feature tracking are tracking drift, lack of scale
adaptability and occlusion handling. However, the scheme makes
for an ideal candidate for complementary tracking with, say, a prob-
abilistic color based tracker.
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