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Abstract— We examine metrics to predict the visibility of
packet losses in MPEG-2 and H.264 compressed video. We
use subjective data that has a wide range of parameters,
including different error concealment strategies and different
compression standards. We evaluate SSIM, MSE, and a Slice-
Boundary Mismatch (SBM) metric for their effectiveness at
characterizing packet-loss impairments.

I. INTRODUCTION

The growing popularity of transmitting compressed

video over the Internet increases the need for quality

assessment methods that can accurately characterize how

the network is affecting the video quality seen by the

end-user. Accurate quality assessment is essential when

specifying requirements for, designing, and testing systems

that transport video over networks.

Significant progress has been made on methods that

assess video quality for applications other than video

transmission. Image quality metrics like SSIM [1] and

those evaluated in [2] are becoming more accurate at pre-

dicting quality of individual frames of video. Full-reference

(FR) video quality metrics like the Continuous Video

Quality Evaluation (CVQE) metric [3] incorporate the

temporal aspects of human perception. Reduced-reference

(RR) metrics like [4] extract low-bandwidth information at

the sender to be sent reliably to the receiver to estimate

resulting video quality. No-Reference (NR) methods such

as the blurring metric in [5] only use information available

in the bitstream or at the decoder.

Recent work considers the visual quality produced by

network impairments. A random-neural-network model is

developed in [6] to assess quality given different band-

width, frame-rate, packet loss rate, and I-block refresh

rate. However, quality is evaluated only in an average

sense without considering the impact of source content.

Average performance across an entire video sequence is

also the focus in [7], which uses MSE to assess quality for

different compression standards and different concealment

techniques. MSE of a packet loss impairment (PLI) is

estimated using a NR metric in [8]. Fluidity impairments

caused by freeze frames resulting from packet loss are

assessed in [9]. NR metrics that directly measure the length

and strength of PLI are in [10], [11].

Our recent work focuses on predicting the visibility of

PLI for both MPEG-2 [12] and H.264 [13] separately. Our

goal in the current work is a quality metric that is targeted

specifically for packet loss impairments yet comprehen-

sive enough to be effective for a variety of compression

standards, encoding parameters, and decoding strategies. A

secondary goal of this paper is to systematically examine

the ability of SSIM [1] to predict the visibility of PLI,

both with and without assistance from other RR and NR

factors. Despite its popularity, we believe this is the first

time SSIM has been systematically evaluated on PLI.

Section II describes the subjective test datasets we use,

emphasizing the diversity of the parameters underlying the

data. Section III describes the attributes of PLI with an

eye toward (a) identifying new attributes to measure and

(b) emphasizing which features of a PLI are dependent

on the compression standard and which are independent

of it. Measurements that characterize PLI are described,

including a new method to compute SSIM for the initial

impairment in an RR setting and an improved NR Slice-

Boundary Mismatch (SBM) metric. Section IV compares

SSIM and MSE, and presents a set of general models

that predict the visibility of PLI for two compression

standards and three concealment techniques without prior

specification of standard or concealment technique.

II. SUBJECTIVE DATASETS

Table I summarizes the three datasets obtained with sub-

jective testing that we use in this study. All three subjective

tests are based on the same methodology: a single-stimulus

test in which the viewers’ task was to indicate by pressing

the space-bar when they saw an artifact. Twelve viewers

were used to label each packet loss in all three tests. For

each of the three tests, packet losses were injected into the

video such that every non-overlapping four-second interval

contains a single packet loss.

Datasets 1 and 2 use video compressed by MPEG-2

at spatial resolution 720 by 480 with an adaptive GOP

structure in which an I-frame is inserted at each scene

change. Dataset 3 uses H.264 video at spatial resolution

352 by 240 with a fixed GOP structure. The video content

used in each test is highly varied in its motion and spatial

texture. The signal attributes are all statistically identical

across the three tests. The video content in Dataset 3 is

identical to half the video content in Dataset 2, while the

content in Dataset 1 is unique.

One important difference among the tests is the decoder

concealment strategy. Dataset 3 uses Motion-compensated
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Data 1 [14] Data 2 [12] Data 3 [13]
Spatial resolution 720x480 720x480 352x240
Frame rate (fps) 30 24 30 30
Duration (minutes) 7.3 8.9 72 36

Compression

standard MPEG-2 MPEG-2 H.264
GOP structure I-B-B-P- I-B-B-P- I-B-P-

I-frame insertion
scene

adaptive
scene

adaptive fixed
GOP length ≤ 13 ≤ 15 ≤ 13 20

concealment default1 ZMEC MCEC

Losses 108 107 1080 2160
Losses in B-frames 14% 14% 50%
Full-frame losses 20% 30% 0%

Mean num. viewers
who saw each loss 4.56 5.13 3.11 1.32
Null Pred. error 0.14599 0.12236 0.041571
Initial mean sq.

pix. error 5.245 3.919 1.708

TABLE I

SUMMARY OF SUBJECTIVE TEST DATASETS

Error Concealment (MCEC) as detailed in [13]. Dataset

2 uses zero-motion error concealment (ZMEC), while

Dataset 1 uses a naive error concealment that is typical

of software decoders1. One common feature of all the

decoder error-handling strategies is that the video decoder

only processes slices that are completely received. Table I

shows both that significantly more viewers saw each loss

in Dataset 1 and Dataset 2 than in Dataset 3, and that the

initial MSE (IMSE) for those pixels whose packet was lost

is very different due to the different concealment strategies.

III. ATTRIBUTES OF PACKET-LOSS IMPAIRMENTS

A. Description of attributes

In general, the impairment caused by a packet loss

depends on the encoding parameters, how the decoder

handles errors, the packetization strategy, and the video

content. Let the original uncompressed video frame at

time t be f(t), the compressed video frames be f̂(t), and

the decoded video frames be f̃(t). The error is e(t) =
f̂(t)−f̃(t). The PLI then can be characterized by attributes

of (a) the error e(t), (b) the decoded signal including error,

f̃(t), and (c) the encoded signal (without impairment) at

the location of the impairment, f̂(t).
The error caused by the impairment, e(t), can be char-

acterized by its support and its amplitude. The support

is characterized by size, spatial pattern, duration, and

location. The error e(t) may have somewhat different

characteristics depending on the compression standard.

For example, H.264 allows Flexible Macroblock Ordering

(FMO), which may alter the spatial pattern of the error.

Using long-term prediction in H.264 can improve error

attenuation [15], but the initial error at the time of the loss

depends more heavily on the underlying video content and

1To improve speed, many software decoders merely swap pointers
between forward and backward reference frames. In this “default con-
cealment”, missing macroblocks are never overwritten. So a reference
frame is “concealed” using data from two reference frames ago, while
B-frames are “concealed” using data from the most recent B-frame.

the decoder concealment than on the compression standard

itself. Further, the size, location and duration of the error

are not influenced by the choice of compression standard
(although they may depend on the encoding parameters).

The decoded signal, f̃(t), at a PLI has several attributes

that are likely to affect packet-loss visibility. A lost frame

is likely to introduce temporal edges and a lost slice to

introduce both temporal and horizontal edges into the

decoded signal. Vertical edges may also be introduced with

FMO, or when the impairment propagates into subsequent

frames. Moving vertical edges that are continuous in the

encoded signal may also become disjointed in the decoded

signal due to the impairment. All of these edge artifacts

are likely to increase the visibility of the impairment.

Attributes of the encoded signal without PLI, f̂(t) at

the location of the PLI can also affect visibility. Texture,

luminance, and motion masking may each reduce visibility

of the PLI. Motion tracking may enhance visibility of

PLI in smoothly moving regions, yet local signal variance

and motion variability may hide the PLI. Clearly, signal

attributes do not depend on the compression standard.

B. Measuring attributes

To obtain an accurate quality metric for PLI, we must

measure the effects described above. In this section, we

describe measurements of these attributes that can be

extracted with a FR, a RR, or NR video quality metric

and discuss limitations of these measurements.

1) Full-Reference measurements: MSE, a FR metric,

measures the error, e(t), directly. It characterizes the error

amplitude in part, but cannot quantify the spatio-temporal

frequency characteristics of the error. MSE only indirectly

measures attributes like error size and duration, but cannot

capture any information about error location or pattern. Fi-

nally, MSE is clearly incapable of characterizing anything

about the decoded pixels f̃(t) or the underlying signal f̂(t).
SSIM, also a FR-metric, characterizes the error, e(t),

to the same degree and accuracy as MSE; however, it

also incorporates some information about the signal at the

location of the impairment. It captures statistical informa-

tion about f̃(t), but does not directly measure the decoded

impairment attributes listed above.

For both MSE and SSIM, the averaging (or pooling)

interval is an important consideration. In this paper, we

consider MSE-1 and SSIM-1, which are averages across

all pixels in a one-second interval that contains the PLI.

We also consider other pooling below.

2) Reduced-Reference measurements: For RR measure-

ments, we envision a video encoder or video server re-

liably providing per-macroblock (MB) information about

e(t), f̂(t) for video quality assessment and having the

video quality metric compute similar information about

f̃(t). The measurements of e(t) assume knowledge of

the decoder concealment strategy and may have reduced

accuracy when using MCEC since its estimate of the

missing motion depends on the received data.
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Max-IMSE, defined as the maximum per-MB MSE over

all MBs in the initial impairment, was shown to be a

useful measure in [13]. Here, we also consider Min-ISSIM,

the minimum per-MB SSIM over all MBs in the initial

impairment. It can be shown that a per-MB initial SSIM

can be computed in an RR framework using

SSIM =
(2μ̂μ̃+ C1)

(μ̂2 + μ̃2 + C1)

[
1 +

(μ̂− μ̃)2 − σ2e
(σ̂2 + σ̃2 + C2)

]

where μ̂,μ̃, σ̂2, σ̃2 are the local means and variances of

f̂(t) and f̃(t) respectively, σ2e is the MSE, and C1 and

C2 are constants described in [1]. We use a MB-sized

uniform window to compute local means and variances

instead of the 11x11 Gaussian window proposed in [1] to

reduce storage and transmission requirements for an RR

metric. We also consider IMSE and ISSIM to quantify the

initial error over the frame with the initial PLI.

We also consider the following RR signal descriptors:

MotMean, MotVar, and ResidEng (the residual energy after

motion compensation) as considered in [12], as well as

SigMean and SigVar. Because our goal is a standards-

independent PLI metric, we measure these directly from

the underlying signal, independent of the compression

algorithm, using 16x16 motion blocks. We store these

using one value each for a complete row of MBs.

3) No-Reference measurements: NR measurements may

be based on pixels (NR-P), the lossy bitstream (NR-B), or

both (NR-BP). Using the lossy bitstream, we can exactly

measure error size, pattern, location, and duration. How-

ever, NR-P methods can only exactly measure information

about f̃(t). Both can estimate attributes of the signal at

the location of the impairment using information from

neighboring unimpaired frames.

As in our past work, we consider here the NR-B mea-

surements of spatial extent, temporal duration, and loca-

tion. We also present a NR-BP Slice-Boundary Mismatch

(SBM) metric based on the NR-P metric presented in [11].

The NR-P metric in [11] applies a PLI detection and

estimation stage to the decoded pixels to measure com-

bined impairment length and strength. Its detection stage

is based on the assumption that it is unlikely for the signal

f̂(t) to have edges at MB boundaries. Unfortunately, in the

over 200,000 frames in our combined subjective tests, the

detection process in [11] detects PLI in one-third of them,

even though less than 6% have PLI. Further, the detection

process misses 60% of the frames with PLI. It is unable

to detect full-frame impairments and often does not detect

the PLI that propagate into subsequent frames because the

impairment is no longer aligned with MB boundaries.

Therefore, we replace the NR-P detection process in

[11] with a NR-B detector that uses information from the

received bitstream to exactly pinpoint impairment location.

Our NR-P estimation process differs from that in [11] in

minor details only. We define the SBM metric based on

the impact of the impairment on slice boundaries, and

apply the metric only on the boundaries between slices

that contain non-zero errors.

SBM =
1

r − 1
r−1∑
i=1

SBM(i) ∗ I(i)

where there are r rows of MBs, SBM(i) is the Slice-

Boundary Mismatch along the i-th MB boundary, and I(i)
indicates we detected an impairment in one of the slices on

either side of the boundary. Let Su(i) and Sd(i) be the sum

of absolute row difference up above and down below the

MB row-boundary i, respectively, and let Sm(i) be their

mean. Then,

SBM(i) = max{(Sb(i)− Sm(i))/Sm(i), 0}
when both Sb(i) > T and Sm(i) > T , where Sb(i) is the

summed absolute row difference across MB row-boundary

i, and T is a noise threshold set to 10 here. In our studies

below, we consider Max-SBM, the maximum value across

all impaired frames.

IV. RESULTS

We use logistic regression [16] to predict packet loss

visibility, as in [12], [13]. Logistic regression is a special

case of a regression using a Generalized Linear Model

(GLM) where the link function is the logit function. Our

goal is to estimate pi, the fraction of viewers who saw error

i. We fit our models using a fraction of the data (training

set) and evaluate it using the remaining samples (test set).

Performance is the prediction error averaged using four-

fold cross-validation (CV) and four initial random seeds.

Each training set has an equal number of samples from

each Dataset, and each Dataset provides equal weight in

the final prediction error. To improve performance, we fit

using log(1 − SSIM) and log(MSE) rather than each

variable directly.

All model performance in this section is illustrated

in both Table II and Figure 1. The first shows the CV

prediction error averaged across all 3 Datasets for all

the models considered, while the second shows the CV

prediction error in each Dataset for a subset of the models

considered. We now describe our models.

We begin by examining the relative importance of the

various error and signal+error descriptors: SSIM, MSE,

and SBM. Table II(a) shows the CV prediction error

for each individual factor. MSE outperforms SSIM for

all pooling strategies, with the Min/Max pooling strategy

performing best. Prediction error for SBM alone is quite

poor although it is better than no model (the null error).

Next, we examine the impact of adding NR error factors

to the single-factor fits examined above. We compare two

sets of models: those using only one of SSIM, MSE, and

SBM, and those using one of those measures along with

two NR error descriptors: initial spatial extent and temporal

duration. Duration is measured in seconds to account for

the disparate GOP structures and the presence of both

video and film in the datasets. To account for the disparate

spatial resolutions, spatial extent is measured relative to
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Primary factor

Primary

factor
alone

Primary factor

+ duration and
spatial extent

SSIM-1 0.062449 0.051103
ISSIM 0.065483 0.054315
MinISSIM 0.058437 0.056216

MSE-1 0.057580 0.050207
IMSE 0.060313 0.052822
MaxIMSE 0.057014 0.055604

MaxSBM 0.084992 0.077192

(a)

Combined model 1: 1-sec. pooling 0.03924
Combined model 2: Initial per-frame error 0.04155
Combined model 3: MB-based error 0.04652

Null-error 0.10331

(b)

TABLE II

AVERAGE CV PREDICTION ERROR ACROSS ALL DATASETS FOR

VARIOUS MODELS. (A) INDIVIDUAL FACTORS WITH OR WITHOUT

DURATION AND SPATIAL EXTENT. (B) MODELS INCORPORATING

ERROR, SIGNAL AND SIGNAL+ERROR FACTORS.
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Fig. 1. Prediction error within each Dataset using one-second pooling.
SSIM: solid lines, MSE: dashed lines, SBM: dotted lines.

the full frame size. The latter set of models are designated

by adding a “+” to the name in the figure.

Each model improvement is statistically significant when

the NR error factors are added, although the largest

improvement is seen for SSIM-1 and ISSIM. Figure 1

shows that SSIM1+ performs nearly identically to MSE1+,

although slightly better on Dataset 1 and slightly worse on

Datasets 2 and 3. Adding the NR error factors helps Max-

SBM+ for Datasets 1 and 3, but it still performs poorly.

Next, we consider logistic regression models that use all

error characteristics (Duration, InitialSpatialExtent, MSE,

SSIM, and SBM) as well as signal characteristics (Sig-

Mean, SigVar, MotMean, MotVar, ResidEng). We tenta-

tively add each new factor individually and decide to

include it in our model only if the average CV prediction

error decreases. We also explore some nonlinear mappings

of each factor to see if improved fitting performance is

possible. We present a set of three models according to the

type of pooling used for the error e(t): one-second pooling

across all frames affected by the PLI, per-frame averaging

across the initial frame affected by the PLI, and maximum-

over-macroblock pooling across the initial frame affected

Model 1:
1-sec pooling

Model 2:
Initial error

Model 3:
Max-MB error

log(MSE1) log(IMSE) log(MaxIMSE)
log(1− SSIM1) log(1− ISSIM) log(MinISSIM)
log(MaxSBM) — —

Duration (Duration< 0.05) (Duration< 0.05)
InitialSpatialExtent InitialSpatialExtent —

|SigMean− 128| |SigMean− 128| |SigMean− 128|
log(SigVar) log(SigVar) log(SigVar)

MotMean > 1/
√
2 — MotMean > 1/

√
2

MotVar — —
log(ResidEng) log(ResidEng) log(ResidEng)

TABLE III

FACTORS IN EACH COMBINED MODEL

by the PLI. Table III summarizes the final factors in

each model. Results in both Figure 1 and Table II(b)

demonstrate that MSE, SSIM, and SBM all combine to

obtain substantially better performance across all Datasets.

V. CONCLUSIONS

Methods to characterize the PLI in the decoded signal

are still in their infancy. On its own, Max-SBM is unable to

accurately predict visibility of PLI, but incorporating it into

a comprehensive PLI detection model improves prediction

accuracy. Combining SSIM and MSE into the same model

also statistically improves performance.
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