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ABSTRACT

In this paper, we formulate the utility functions of distortion and
Peak Signal-to-Noise Ratio (PSNR) which are generally used for
the performance evaluation of video coding applications as the util-
ity functions. The convexity property of these utility functions is
analyzed in the original domain and transformed domain of an op-
timization variable. From this analysis, we derive joint optimiza-
tion scheme with congestion control through the utility matching be-
tween TCP layer and video coding layer. Experimental results show
that the overall PSNR increases and the variation of quality among
the utility functions is reduced.

Index Terms— Video, distortion-rate model, utility function,
convexity, joint optimization.

1. INTRODUCTION

Since the publication of the seminal paper [1] by Kelly et al. in
1998, the framework of Network Utility Maximization (NUM) has
found many applications in network rate allocation algorithms, inter-
net congestion control protocols, user behavior models and network
efficiency-fairness characterization.

Consider a communication network with logical links, wired or
wireless, each with a fixed capacity of cl bps and each source trans-
mitting at a source rate of xs bps. Each source emits one flow using
a fixed set L(s) of links in its path and has a utility function Us(xs).
Each link l is shared by a set S(l) of sources. In order to maxi-
mize the network utility, the problem in (1) is formulated and solved
by optimization methods such as a dual-based distributed algorithm
using the Lagrangian duality

max
x�0

X
s

Us(xs) s.t.
X

s∈S(l)

xs ≤ cl, ∀l (1)

If each user’s utility function is a strictly concave function, the prob-
lem in (1) can be a convex optimization problem which has a con-
cave object function with convex inequality constraint functions and
affine equality constraint functions. A concave function Us(xs) can
be transformed into a convex function −Us(xs) or 1

Us(xs)
and the

maximization of a concave function is equivalent to the minimization
of a convex function. If we have a convex optimization problem,
the solution of a convex optimization is the global optimum. Fur-
thermore, the optimal solution can be obtained by the Lagrangian
duality, if the problem in (1) is a convex optimization problem and
satisfies the Slater’s qualification condition which means that there is
a solution vector x to satisfy the inequality condition strictly, that is,P

s∈S(l) xs < cl[2]. If the channel capacity cl is larger than zero, we
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can always find bit rate xs to satisfy the inequality condition strictly.
Therefore, concavity of utility function is mainly discussed in this
paper to use a dual-based distributed algorithm for the problem (1).
Many other methods to solve optimization problems are explained
in [3].

The main question arising from the expression in (1) is what
the utility function of each source is. The utility functions which
are considered as performance measures of an application layer are
defined by the different types of resource allocation [1][4] and can be
implicitly determined by given protocols such as Transport Control
Protocol (TCP) [5] or Media Access Control (MAC) protocol [6]
from reverse engineering. Reference [7] defines user level utility
with respect to Peak Signal-to-Noise Ratio (PSNR).

In this paper, we formulate the distortion function D(xs) or
PSNR(xs)

1 which are generally used for the performance eval-
uation of video coding applications as the utility functions since
they are highly related to the objective of video coding, that is, the
maximization of the video quality given bit rate constraints assum-
ing PSNR is the objective tool measuring the video quality. Refer-
ence [8] shows that rate-adaptive real time applications have inelastic
flows. However, we assume that video utility functions are operating
above their minimum bit rate to guarantee minimum quality.

The rest of the paper is organized as follows. In section 2, vari-
ous Distortion-Rate (D-R) models and a PSNR-Rate (P-R) model for
video coding are considered as user’s utility functions and the con-
vexity of the utility functions is analyzed on the original domain and
transformed domain of an optimization variable in section 3. One
example of a video utility function for the joint optimization with
congestion control is shown in section 4. Section 5 concludes the
paper.

2. UTILITY FUNCTIONS FOR VIDEO

From the information theory, a D-R model 2 in (2) is induced from
the Independent Identically Distributed (IID) gaussian process with
variance σ2 [9]

D(R) = σ22−2R
(2)

According to different distributions and quantization methods, the
above D-R model can be generalized into (3) [9]

D(R) = ε2σ22−2R = βe−αR (β, α > 0) (3)

It is generally well known that a D-R model (3) only matches well
with experimental results in a high bit rate region. A P-R function

1PSNR(xs) = 10log10
2552

D(xs)
2we use the bit per pixel R instead of the bit per second xs without index s

of each source for the simplicity : Rs = xs
fr×fw×fh

where fr is the number

of frames per second and fw × fh is the number of pixels per frame.
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Fig. 1. PSNR vs. Rate for several videos.

PSNR(R) from (3) makes it clear, since PSNR(R) has a linear
relation with R as follows :

PSNR(R) = 10log10
2552

βe−αR
= a1R + a2 (4)

Figure 1 shows that the linear model (4) does not match well with the
experimental PSNR(R) which is highly nonlinear especially in a
low bit rate region. Moreover, the video quality of many applications
is between 28 and 45dB which is a highly nonlinear area. A D-R
model (5) is a variation of (3) shown in [10]

D(R) = βe−αRγ

(β > 0, 0 < γ, α < 1) (5)

The main reason of the mismatch between mathematical mod-
els and experimental results is that the distortion of mathematical
models is obtained at given variance of the Discrete Cosine Trans-
form (DCT) coefficients. In the image compression techniques such
as JPEG and JPEG2000 [9], input data of a quantizer are the DCT
coefficients of natural image pixels. Therefore, the variance of in-
put data does not depend on the quantization step size. However, in
the video coding techniques such as H.264 [11], residual data of a
current frame which are the difference between original pixels and
predicted pixels generated from inter or intra prediction are trans-
formed and quantized. Inter or intra predicted pixels are the sum
of predicted pixels and quantized residual data of a previous frame
or a current frame, respectively [11]. Therefore, residual data have
different variance according to the quantization step size which con-
trols bit per pixel R shown in Figure 2. Reference [12] shows that
the variance of residual data is highly correlated to the variance of
the DCT coefficients. Consequently, the variance of residual data
relates to the distortion shown in Figure 2. In a high bit rate region,
the variance of residual is almost same so that experimental results
match well with (3) but in a low rate region the variance changes
rapidly so that mathematical models are different from experimental
results. Therefore, the input variance of a quantizer changes with
respect to R so that a D-R model (3) needs to be modified as follows
:

D(R) = ε2σ2(R)e−αR = ε2(a1e
−a2R + a3)e

−αR

= ae−bR + ce−dR (a, b, c, d > 0) (6)

PSNR can be considered as a utility function in addition to the
distortion. It is different from [7] which defines a utility function of
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Fig. 2. Variance and distortion vs. Rate.

quality with respect to PSNR. Here, PSNR itself is a utility function
with respect to bit rate xs

PSNR(Rs) = mslog(Rs) + ks (ms, ks > 0) (7)

A P-R model (7) is fitted to experimental results (H.264 reference
software model JM11.0 [13] is used for this experiment) shown in
Figure 1. They match well with experimental results in the usual
operating bit rate (R < 2). A D-R model (8) is induced from (7)

Ds(Rs) = hsR
−js
s (hs, js > 0) (8)

3. CONVEXITY OF UTILITY FUNCTIONS

In order to formulate the problem in (1) as a convex optimization
problem, the object function must be a concave function. Therefore,
we are focusing on the concavity of each utility function, because
if each utility function is a concave function, the sum of the utility
functions is a concave function [2]. Furthermore, the problem (1)
can be decomposed by the partial Lagrangian. Then the maximiza-
tion of the problem (9) is decomposed into each source’s maximiza-
tion problem. Interested readers can refer to [14] for more detailed
explanation.

Q(λ) = max
x�0

X
s

„
Us(xs) − xs

X
l

λl

«
+

X
l

λlcl (9)

min
λ�0

Q(λ) (10)

D-R models in eqs. (3, 5, 6 and 8) are strictly convex functions
and a P-R model (7) is a strictly concave function if the constants
of the equations satisfy the conditions. Convexity or concavity of a
function can be verified by checking whether its Hessian is positive
definite or negative definite, respectively [2]. If (7) or negative of
eqs. (3, 5, 6 and 8) are used for the utility functions, the problem (1)
is a convex optimization problem.

Moreover, references [14][15][16][17] show that optimization
problems with coupled constraints can be decoupled after transfor-
mation of optimization variables and concavity of a utility function
needs to be reevaluated since convexity and concavity are not an in-
trinsic feature of a function. One of simple examples is the geometric
programming which is not a convex optimization problem but it is
transformed into a convex problem [2]. Similarly, convex functions
can become non-convex functions after transformation. This section
analyzes the effect of transformation to the utility functions which
are represented in section 2. A basic transformation which is used in
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Fig. 3. Hessian of U(R′) for (6).

Fig. 4. Network configuration for experiment.

[14][15][16] is R′ = logR. After transformation, the Hessian of the
utility function is

d2U(R′)
dR′2 =

d2U(R)

dR2

„
dR

dR′

«2

+
dU(R)

dR

d2R

dR′2 (11)

= R

„
d2U(R)

dR2
R +

dU(R)

dR

«
(12)

U(R′) of (3) is a strictly convex function if R > 1
α

. If α is 2log2, R

should be larger than 1
2log2

≈ 0.72 bit per pixel. U(R′) of (5) is also

a strictly convex function if R > ( 1
α
)

1
γ > 1

α
. The utility functions

of (3) and (5) have inelastic flows in a low bit rate region and they
can be classified as a sigmoidal utility function. Consequently, they
need to operate in a high bit rate region to be convex. However, as
mentioned in section 2, these utility functions are not exactly mod-
eled in a low bit rate region. Therefore, we are focusing on the other
models. The utility function of (6) has a saddle point between 1

b
and

1
d

assuming b > d. From Figure 3, a saddle point of (6) exists near
0.05 bit per pixel for the foreman sequence. Therefore, U(R′) of (6)
can be considered as a convex function in a general operating region.
If R > 0, transformed utility functions of (7) and (8) are strictly a
concave and convex function, respectively.

4. JOINT OPTIMIZATION WITH CONGESTION
CONTROL

Many examples of joint optimization show TCP layer’s utility as user
utility [14]. In this section, the relation between TCP layer’s utility
and a video coding utility, especially, a PSNR utility function (7) is
considered. User Datagram Protocol (UDP) is usually used for the
transmission of video data but TCP can be used (the industrial home
networking standard developed by Digital Living Network Alliance
(DLNA) uses the HyperText Transfer Protocol (HTTP) over TCP as
mandatory protocols and Real-Time transport Protocol (RTP) over
UDP as optional protocols for media transport [18]). Reference [14]

Table 1. PSNR weight and TCP parameter

Sequence Weight (ms) TCP parameter (αs)
Foreman 5.8 0.29

Crew 9.28 0.98
Football 10.62 1.062

Bus 11.05 1.105

shows that the utility function of TCP Vegas, FAST and Scalable
TCP is αsdslogxs. αs is an unknown variable which is related to
control the TCP window size shown in (14) (In case of proportion-

ally fair resource allocation, αs = α(const)
ds

[4]) and ds denotes the
round-trip propagation delay which is usually estimated minimum
Round-Trip Time (RTT) [19][14].

From this result, the maximization problem of the sum of TCP
utility functions is equivalent to the maximization of sum of PSNR
utility functions if (13) is satisfied, i.e.,

ms = αsds, xV
s = xT

s (13)

where xV
s and xT

s are the bit rate of a video and TCP utility function,
respectively. The first condition of (13) is satisfied, if a TCP param-
eter αs is adjusted according to the weight ms which is related to
video sequences listed in Table 1. These weights are obtained from
curve fitting of (7) to the simulation results of H.264 reference soft-
ware model JM11.0 [13]. Usually, video sequences with higher mo-
tion have a higher weight. For the joint optimization, αs is locally
updated without any interaction with the other video utility functions
and their TCP protocols through the utility matching between a video
encoder (e.g. H.264 encoder) and TCP shown in (13). The second
condition of (13) is generally satisfied since a video encoder con-
trols its bit rate to prevent a buffer between a video encoder and TCP
overflow or underflow which means that input bit rate of a buffer xV

s

is almost same as output bit rate xT
s .

We show some experimental results regarding the utility match-
ing at the network configuration of Figure 4. There are three video
source utility functions UV

k , TCP utility functions UT
k and node nk

k ∈ {0, 1, 2}, respectively. UV
0 , UV

1 and UV
2 send the foreman,

crew and football sequence which have a different weight ms listed
in Table 1, respectively. Link l0 and l1 have 0.5 bit per pixel and 1
bit per pixel capacity and the round-trip propagation delay time of
each link ds is 10 second. TCP Vegas algorithm is used for conges-
tion control [19]. The effect of the delay of video utility functions is
ignored assuming network layers guarantee the maximum jitter and
delay of networks using MAC, Quality of Services (QoS) and buffer-
ing. Video utility functions control exactly their bit rate according
to their TCP bit rate and overheads of other protocols between two
utility functions are ignored which means xV

s ≈ xT
s .

Two different scenarios are tested. First, video and TCP utility
functions do not match. In this case, TCP assumes that its utility
function αlogxT

s (without loss of generality, we assume α = 1)
which does not match a video utility function (7). In the other case,
TCP utility functions are considered as mslogxT

s which match video
utility functions (a constant ks of (7) does not affect to the optimal
solution). In this scenario, video utility functions need to signal their
weight ms to their TCP and each TCP updates αs listed in Table 1.
In both cases, video utility functions do not solve any optimization
problem but control their source rate xV

s to follow TCP bit rate xT
s .

TCP adjusts its window size ws(t) at time t according to :

ws(t + 1) =

8><
>:

ws(t) + 1
Ts(t)

, if
ws(t)

ds
− ws(t)

Ts(t)
< αs

ws(t) − 1
Ts(t)

, if
ws(t)

ds
− ws(t)

Ts(t)
> αs

ws(t) else

(14)
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Fig. 5. Experimental results for the match and mismatch utility func-
tions.

where Ts(t) = ds +
P

l λl(t) is the round-trip time of source s at

time t and then TCP bit rate xT
s (t) = ws(t)

Ts(t)
. These operations of

TCP correspond to solving the primal problem (9). A link algorithm
(e.g. DropTail) which solves the dual problem (10) feedbacks a dual
variable λl(t) to sources which use its link. Interested readers refer
to [19] for more detail explanation.

Figure 5 shows PSNR of video utility functions for the match
and mismatch cases. In both cases, TCP and link algorithms always
try to achieve an optimal solution for TCP’s utility function but in
the mismatching case, the optimal solution is not optimum to the
video utility function. Therefore, sum of matched utility functions is
always larger than sum of mismatched utility functions at the equi-
librium (time > 200) due to the global optimum of the convex
optimization problem (1) represented in Figure 5(d).

Another important point is that the variation of PSNR among
the utility functions can be reduced since the optimal bit rate xV ∗

s ≈
xT∗

s = msP
l λ∗

l
at given optimal dual variables λ∗

l from the Karush-

Kuhn-Tucker condition for the primal problem (9) [19]. Thus, the
utility functions which have a larger weight ms increase their cod-
ing rate given dual variables. Table 1 shows that video sequences
with higher motion requiring higher bit rate to get a same quality
usually have a larger weight ms. Therefore, quality variation among
the sequences can be reduced because a higher bit rate is allocated
to a utility function encoding higher motion video sequences by the
weighted proportionally fair scheme which is realized by TCP and a
link algorithm. Figure 5 shows that UV

0 which has a smaller weight
ms has a lower PSNR at the match case but the other utility func-
tions which have a larger weight have a higher PSNR at the equilib-
rium (time > 200). Consequently, the variation of PSNR among
the utility functions which send the different sequences is smaller
among the matched utility functions than among the mismatched
utility functions.

5. CONCLUSION

In this paper, we have shown that distortion and PSNR utility func-
tions are convex and concave in original and transformed domain, re-

spectively. Especially, the PSNR(R) function can be represented
as a weighted log utility function which has different weights ac-
cording to video sequences. Because some TCP congestion control
algorithms is a log utility function, video and TCP can be jointly op-
timized to maximize the overall PSNR through the utility matching.
Consequently, video streaming application can cooperate well with
current TCP congestion control algorithm of the weighted propor-
tionally fairness.
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