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ABSTRACT

We present a multiple description coding (MDC) scheme for 3-D
plane-based surfaces. First, planes are split into two disjoint subsets,
called descriptions, each of which provides an equal contribution in
3-D surface reconstruction. To optimize the quality of the decoded
surface, planes in each description are adaptively compressed ac-
cording to the channel error condition. Then, the two compressed
bitstreams are transmitted over distinct channels to the decoder. At
the decoder, if both channels are available, the two bitstreams are
decoded and merged together to reconstruct a high quality surface.
If only one channel is available, we employ a hole filling method to
fill visual holes and reconstruct a smooth 3-D surface. Therefore, the
proposed algorithm provides an acceptable 3-D surface, even when
one channel is totally lost.

Index Terms— Error resilient transmission, multiple descrip-
tion coding, plane-based 3-D surface, graph coloring, and hole fill-
ing.

1. INTRODUCTION

Much research effort has been made for robust transmission of 3-D
data, since 3-D compressed bitstreams are very sensitive to channel
errors. In [1], Yan et al. proposed a 3-D data partitioning scheme to
alleviate the error propagation problem in 3-D bitstreams. In [2], an
unequal error protection (UEP) method was proposed to improve the
error robustness of progressively compressed 3-D bitstreams. Re-
cently, Park et al. proposed an error concealment scheme for 3-D
data, which can recover the visual quality of corrupted mesh sur-
faces [3]. In severe error conditions, however, these conventional
techniques fail to provide an acceptable quality reconstruction of 3-
D surfaces and yield visually annoying artifacts.

Multiple description coding (MDC) has been applied to 2-D
video data to protect the quality of reconstructed videos [4, 5]. An
MDC encoder generates two or more bitstreams, called descriptions,
of the same importance. These descriptions are transmitted over dis-
tinct channels to the decoder. The decoder is designed to recon-
struct the signal from one or both descriptions according to channel
conditions. Therefore, an acceptable quality reconstruction can be
achieved, even though one channel is totally lost. Similarly, if 3-D
data can be split into two subsets of the identical importance, MDC
is a promising framework for robust transmission of 3-D data over
noisy channels.

‡The work of C.-S. Kim was supported by the MIC, Korea, under the
ITRC support program supervised by the IITA (IITA-2006-C1090-0603-
0017).

Different from 2-D image and video, 3-D data are often ex-
pressed by geometry primitives, which have irregular structures, such
as polygonal meshes [6] and point clouds [7]. Due to the irregularity
of geometry primitives, it is challenging to extract two descriptions
of the identical importance from the conventional 3-D representa-
tion. Note that the MDC was applied to the mesh data compression
[8, 9]. To facilitate the processing of 3-D geometry, Park et al. re-
cently introduced a plane-based representation of 3-D points [10].
They divided the whole 3-D volume into regular grid cubes, and ap-
proximated point samples within each cube with a plane patch [10].
The regular cube structure makes it easy to split 3-D geometry into
two subsets.

In this paper, we propose a robust transmission system for 3-D
point data based on the MDC framework. First, we approximate in-
put point samples by multiscale plane patches [10]. Then, the plane
patches are split into two descriptions using a graph coloring scheme
[11]. In order to minimize overall reconstruction errors, planes in
each description are encoded adaptively according to the channel
conditions. Then, the compressed bitstreams are transmitted over
distinct channels to the decoder. At the decoder side, the two bit-
streams are independently decoded and merged together to form a
3-D surface. If both channels are available, the decoder reconstructs
a high quality surface. On the other hand, if only one of the channels
is available, the surface is recovered by a novel hole filling algo-
rithm. Therefore, a lower but acceptable quality surface is obtained,
even when one channel is totally lost.

This paper is organized as follows. The proposed MDC encod-
ing and decoding schemes are described in Section 2 and Section 3,
respectively. Then, Section 4 evaluates the error robustness of the
proposed algorithm. Finally, Section 5 concludes this paper.

2. MDC OF PLANE-BASED 3-D SURFACES

The block diagram of the proposed MDC system is shown in Fig. 1.
To extract geometry primitives with a regular structure, an input
point data is expressed by the plane-based 3-D representation [10].
The resulting plane set is then split into two disjoint subsets of the
equal importance. Finally, the two descriptions are compressed to
minimize the expected distortion and transmitted over distinct chan-
nels to the decoder.

2.1. Coloring of Plane-Based 3-D Surfaces

To generate two descriptions from a plane-based 3-D surface, we
split the original plane set D0 into two disjoint sets D1,0 and D1,1.
Since the plane patch set D0 is represented over the regular cubes,
the simplest way to obtain D1,0 and D1,1 is to divide the regular
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Fig. 1. The block diagram of the proposed MDC algorithm. λ indicates the channel error probability.

cubes using the quincunx subsampling [4]. However, the quincunx
sampling may yield an unequal sampling of 3-D surfaces, since it
only splits the whole volume equally without the consideration of
surface characteristics.

In graph theory [11], a graph coloring method extracts disjoint
sets of nodes from a given graph G. When the plane set D0 is asso-
ciated with the graph GD0 , the division of D0 can be seen as a graph
coloring problem of GD0 with chromatic number χ(GD0) = 2, i.e.,
two disjoint sets. Note that a graph is two-colorable, if it is divided
into two disjoint sets and each element in one set is connected to the
elements in the other set only. This is desirable since the proposed
algorithm attempts to reconstruct the loss of one set using the infor-
mation in the other set. However, a graph is two-colorable if and
only if it is bipartite.

A typical 3-D mesh GD0 is not bipartite and some adjacent
nodes should be assigned the same color. These nodes can be seen
as a penalty or a cost in the graph coloring problem [12]. In this
work, we attempt to minimize the overall cost due to these miscol-
ored nodes.

Given the plane set D0 with the graph GD0 , we get the red plane
set PR for D1,0 and the blue plane set PB for D1,1 to minimize the
coloring cost function, which is defined as

(PR,PB) = arg min
Pi∈PR,
Pj∈PB

⎡
⎣ ∑

Pi∈PR

CR(Pi)+
∑

Pj∈PB

CB(Pj)

⎤
⎦ , (1)

where CR(Pi) is the number of red planes adjacent to a red plane
Pi ∈ PR, and CB(Pj) is the number of blue planes adjacent to a
blue plane Pj , respectively. To locally minimize the cost function in
(1), we propose the following iterative algorithm. It is noted that a
similar algorithm was introduced for the generalized graph coloring
problem with χ(G) ≥ 3 in [12].

1. Choose initial sets PR and PB with the equal number of
planes.

2. Find the red plane Pi ∈ PR with the maximum ΔCRB(Pi).

3. Find the blue plane Pj ∈ PB with the maximum ΔCBR(Pj).

4. If ΔCRB(Pi) + ΔCBR(Pj) ≤ 0, stop. Otherwise, color Pi

as blue and Pj as red, and go to step 2.

ΔCRB(ri) is the change in the cost function, when Pi ∈ PR turns
blue. Similarly, ΔCBR(Pj) is the differential cost for the color flip-
ping of Pj . Note that the overall cost in (1) decreases maximally

(a) (b)

Fig. 2. The division of the 3-D ‘Venus’ model: (a) the plane-based
representation and (b) its division into blue and red subsets.

in every iteration, though the iterative method cannot guarantee the
coloring result that has the globally minimum cost.

Fig. 2 shows the coloring of the 3-D ‘Venus’ plane model. Each
node corresponds to a cube region, and the 6-connectivity is as-
sumed between cubes. We observe that red planes and blue planes
are equally distributed on the ‘Venus’ surface and adjacent planes
tend to have different colors. In other words, the proposed algorithm
splits the 3-D surface into two disjoint sets efficiently.

2.2. Encoding of Plane Parameters

In the MDC decoder, there are three possible surface reconstruc-
tions, D̃0, D̃1,0, and D̃1,1, according to the channel condition. We
assume that two channels fail independently with the same probabil-
ity λ. Then, the expected distortion of the reconstructed 3-D surface
is given by

(1 − λ)2d(D0, D̃0) + λ(1 − λ)d(D0, D̃1,0)

+λ(1 − λ)d(D0, D̃1,1) + λ2φ, (2)

where d(·) is the distortion metric between 3-D models, d(D0, D̃0)

is the central distortion, d(D0, D̃1,0) and d(D0, D̃1,1) are the side
distortions, and φ is the distortion when no information is received.
Our objective is to minimize the expected distortion according to the
given channel error rate λ.
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To minimize the expected distortion, we encode the parameters
of the planes in PR ∪ PB. D̃1,0 depends on PR and D̃1,1 depends

on PB, whereas D̃0 is affected by both PR and PB. Therefore, the
minimization of the cost function in (2) yields the plane set P =
PR ∪ PB, given by

P = arg min
PR,PB

[(1 − λ)d(D0, D̃0(PR,PB)) +

λd(D0, D̃1,0(PR)) + λd(D0, D̃1,1(PB))]. (3)

Note that, when only one description is available, we incorporate
the hole filling method to interpolate the missing planes of the other
description, as shown in Fig. 1. During the hole filing, the plane in a
missing cube is affected by the other planes in the neighboring cubes.
Due to this cross dependency among the planes, it is computationally
very complex to find the globally optimal solution of (3).

As an alternative, we propose an iterative plane modification al-
gorithm to obtain a locally optimal solution of (3). The proposed
algorithm refines each plane Pt to P ∗

t , while keeping the plane pa-
rameters of the other planes fixed. Let us assume that Pt belongs
to PR and its neighbor planes in PB are Pi, i = 0, 1, 2, 3, without
the loss of generality. Then, the refinement equation for Pt, which
reduces the cost in (3), is given by

P ∗
t = arg min[(1 − λ)dp(Pt, P

∗
t )+λ

3∑
i=0

dp(Pi, P̃i(P
∗
t )) +

λdp(Pt, P̃t(P0, P1, P2, P3))], (4)

where dp(·) denotes the distortion between planes, and P̃i(·) is an
interpolated plane in the hole filling process. Since the last term in
(4) does not depend upon P ∗

t , (4) can be reduced to

P ∗
t = arg min

[
(1−λ)dp(Pt, P

∗
t )+λ

3∑
i=0

dp(Pi, P̃i(P
∗
t ))

]
. (5)

Various metrics can be used to measure the distance dp(Pt, P
∗
t )

between Pt and P ∗
t in a cube. In this work, we add up the dis-

tances from the sampled points on Pt to the plane P ∗
t . The points

on Pt are sampled using the domain grids of resolution 512 × 512
on the xy, yz and zx faces, respectively. Similarly, we compute
dp(Pi, P̃i(P

∗
t )). However, since each local plane is closely related

to its adjacent planes, the sampling of points on Pi is carried out
using only the joint boundary face of P ∗

t and Pi.
The refinement of the plane parameters is iteratively performed

through all planes in P . The iteration stops, when the difference
between the results of the ith iteration and the (i + 1)th iteration
becomes negligible. Then, the final plane parameters are encoded
using the plane compression algorithm in [13], and transmitted to
the decoder.

3. MDC DECODING ALGORITHM

In the decoder, two decoding scenarios are possible. As shown in
shown in Fig. 1, if both channels are available, we decode each bit-
stream and merge the decoded descriptions together to reconstruct
the 3-D plane surface D̃0. On the other hand, if one channel fails,
the decoder uses the other channel only. However, when the half
of plane surface information is lost, the reconstructed 3-D model
has holes on its surface, which degrade visual quality severely. To
overcome this issue, we detect and fill holes by exploiting the high
correlation between two plane subsets D1,0 and D1,1.
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Fig. 3. The proposed hole filling scheme: (a) the reconstructed sur-
face using only one description, (b) the hole candidates, and (c) the
hole recovery, where red lines depict the interpolated planes.

Fig. 3 illustrates the proposed hole filling scheme. In Fig. 3 (a),
the surfaces from one description are depicted as blue lines, and
those from the other missing description as dotted gray lines. First,
we collect all empty cubes around the intact cubes as hole candi-
dates. Specifically, all cubes are traversed in the raster scan order and
the number of adjacent intact planes K is recorded for each cube, as
shown in Fig. 3 (b). In this work, if K is larger than or equal to 2,
the cube is declared to be a hole. Then, for each hole, we estimate
a new plane P̃ . From the K planes, we sample the boundary points
pi’s, i = 0, 1, · · · , L − 1, which are located on the faces of the
missing cube. For the sampling, we use the global grid of resolution
216 × 216 × 216. Finally, we estimate the parameters of the plane
P̃ : (ã, ñ) by

ã =
1

L

L−1∑
i=0

pi,

ñ = arg min

L−1∑
i=0

[ñ · (pi − ã)]2 , (6)

subject to |ñ| = 1, where ã is a point on P̃ and ñ is the normal
vector. In Fig. 3 (c), the proposed algorithm recovers new planes on
hole regions, which are depicted by red lines.

4. SIMULATION RESULTS

The performance of the proposed MDC system is evaluated on the
3-D ‘Dancer’ model in Fig. 5. The ‘Dancer’ model has 23K planes
on 128 × 128 × 128 grid cubes. As the distortion metric, we adopt
the Hausdorff distance between the original model D0 and the re-
constructed model D̃0, D̃1,0, or D̃1,1. Note that the Hausdorff dis-
tance is also used in [14] to evaluate the distortion between 3-D mesh
models. Then, the obtained distortions are expressed in terms of the
peak signal-to-noise ratio (PSNR), where the peak difference is the
diagonal length of the bounding cube for the 3-D model.

Fig. 4 shows the trade-off relationship between the central dis-
tortion d(D0, D̃0) and the side distortion

1/2[d(D0, D̃1,0) + d(D0, D̃1,1)]

according to the channel error rate λ. In this test, the bitrate is set
to 1.0 bits per plane (bpp). As λ becomes higher, the qualities of
the reconstructed 3-D models from the side decoders become better,
while the central reconstruction becomes worse.

Next, we assume that only one bitstream is available at the de-
coder side. The corrupted surface in Fig. 5 (a) is recovered in Fig. 5
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Fig. 4. The relationship between the central distortion and the side
distortion according to the channel error probability λ.

(b), using the hole filling algorithm. The annoying holes are faith-
fully removed. Moreover, compared with the error-free reconstruc-
tion in Fig. 5 (c), the recovered surface in Fig. 5 (b) exhibits only
modest degradation. The proposed algorithm consumes about 40%
more bits (210K bytes) to encode D1,0 and D1,1 separately than
to encode the whole model into a single description (146K bytes).
However, using additional bits, the proposed algorithm provides an
acceptable 3-D data reconstruction, even when one channel is totally
lost. These results demonstrate that the proposed algorithm guaran-
tees a minimum but acceptable quality reconstruction of 3-D data
even in severe channel conditions.

5. CONCLUSION

In this paper, we proposed an algorithm for robust transmission of
3-D surfaces based on the MDC framework. First, we split a plane-
based 3-D surface into two descriptions using the graph coloring
scheme. In order to minimize the expected distortion, we encoded
the parameters of plane patches according to the channel error rate.
Finally, we proposed a novel 3-D surface recovery algorithm, which
reconstructs an acceptable quality surface even when only one de-
scription is available. The simulation result demonstrated that the
proposed MDC algorithm is a promising framework for robust trans-
mission of 3-D data over noisy channels.
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