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ABSTRACT
We consider the problem of estimating and encoding depth maps

from multiple views in the context of 3D-TV with free-viewpoint
rendering. We propose a novel codec based on the Rate-Distortion
(RD) optimization of the Depth-Image-Based Representation (DIBR)
in the wavelet domain. The rate constraint enforces the piecewise
smoothness of the depth map, which improves the reliability of its
estimation. We propose an efficient optimal solution for the joint es-
timation and coding of the depth map using dynamic programming
along the tree of wavelet coefficients. It also provides an automatic
bitrate allocation between images and depth maps. Experiments on
real data show that the wavelet approach can improve RD perfor-
mances over a state-of-the-art technique that uses quadtrees.

Index Terms— Free-viewpoint rendering, Depth-Image-Based
Representation (DIBR), disparity-map estimation

1. INTRODUCTION

The success of three-dimensional (3D) video games and online 3D
virtual worlds emphasizes the demand for viewing experiences be-
yond passively watching two-dimensional televisions. In particu-
lar, viewers look for increased interactivity inside four-dimensional
(3D+t) environments. This demand is likely to be increased by the
advent of autostereoscopic displays [1], which let user perceive the
third dimension without wearing special glasses.

However, recording and broadcasting such 3D+t environments
is still an open problem. In spite of an intense research effort in the
domain of free-viewpoint 3D-TV [1], virtual worlds are still mostly
synthetic, created using computer graphics tools. Indeed, allowing
users to freely choose their viewpoints requires the encoding of all
the possible views, i.e. the entire plenoptic function [2]. Such a mas-
sive amount of data is not compatible with the current broadcasting
systems.

This issue is avoided in synthetic environments by encoding the
underlying 3D geometry of the world, along with its photometric
properties, and rendering views on demand at the decoder. This ap-
proach greatly reduces the amount of data to broadcast. However, it
requires the knowledge of the 3D geometry, whose estimation from
real data is still a difficult issue.

The Depth-Image-Based Representation (DIBR) tries to miti-
gate these issues by providing a trade-off between no 3D geometry
and exact 3D geometry. In this representation, the plenoptic function
is approximated locally by pairs of images and depth maps, arbitrary
views being created on demand at the decoder using Image-Based
Rendering (IBR) [2]. Since depth errors tend to be more conspic-
uous when the virtual viewpoint is far from the actual one, this ap-
proach can cope with approximate depth maps. At the same time,

since the required number of recorded views is much reduced, the
DIBR offers a compact data representation.

In this paper, we propose to study the encoding of the DIBR
and the estimation of its depth maps from multiple views using a
novel Rate-Distortion (RD) optimization. For simplicity, we limit
the study to static DIBR with a unique pair of grayscale image and
depth map. The proposed RD framework considers both the image
and the depth map jointly to obtain an automatic allocation of the
available bitrate between the two. The choice of the S transform, an
integer version of the Haar transform [3], to represent the depth map
allows us to use the rate constraint to obtain piecewise smooth depth
maps and as a consequence to reduce spurious depth errors. More-
over, the S transform introduces a tree of dependencies between the
wavelet coefficients, which allows an efficient solution of the RD
optimization using dynamic programming [4]. Experimental results
on real data confirm the efficiency of the wavelet-based smoothness
and show that the RD performances of the proposed codec can out-
perform those obtained using quadtrees [5, 6].

Note that the problem of depth-map estimation is related to the
one of motion-field estimation in video coding, where techniques
based on RD-optimized quadtrees have also been proposed [7].

The remainder of the article is organized as follows. Section 2
gives an overview of the RD framework, while Section 3 presents an
efficient solution and Section 4 gives an account of our experimental
results.

2. RATE-DISTORTION FRAMEWORK

The encoder has access to a set of views. These views are repre-
sented by the column vectors Is, s ∈ [0, ..., Nv − 1], obtained by
stacking all the pixels together. The view I0, called the reference
view, is the image in the DIBR. The views are assumed to be from
coplanar viewpoints and to have been rectified [8], so that the motion
vectors due to the motion parallax between the reference view and
any other view are parallel to the baseline between these two views.

The decoder renders arbitrary views inside the plane by mo-
tion compensating the reference view using motion vectors obtained
from the depth map. Since this is a forward motion compensation,
it leaves holes in the rendered view which are filled using interpola-
tion. The norm of the motion vectors is inversely proportional to the
depth of the scene. It is therefore more practical to define the RD
framework in terms of inverse depths, that is, disparities.

The goal of the encoder is then to find a DIBR such that the
rendered views Îs are as close as possible to the actual views Is in
the mean-square sense, under the constraint of the available bitrate.
In order to reduce their entropy, both the reference view I0 and the
disparity map δ are encoded in the wavelet domain. We consider two
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different wavelet synthesis operators to obtain an efficient solution to
the RD problem: a linear operator with matrix T for the image and
an non-linear integer operator T for the disparity map. Let c and d

be the vectors of their wavelet coefficients. We can then write

Î0 � Tc and δ � T (d). (1)

Introducing the Lagrange multiplier λ [9], also known as RD slope,
the RD optimization is given by

min
c,d

1

Nv

Nv−1∑
s=0

∥∥∥Is −M
f
s (Tc; T (d))

∥∥∥2

2
+ λ (R(c) + R(d)) , (2)

where Nv denotes the number of views, ‖.‖22 the norm 2, R(.) the
bitrate andMf

s (̂I0; δ) the forward motion compensation that trans-
forms the encoded reference view Î0 into the rendered view Îs using
the disparity map δ.

Ignoring the issues of occlusions and resampling, the Mean-
Square Error (MSE) term can be defined either in terms of backward
motion compensation or forward motion compensation. The latter is
more practical since it decouples the encoded reference view from
the motion compensation. Using this approximation, the optimiza-
tion becomes

min
c,d

1

Nv

Nv−1∑
s=0

∥∥∥Mb
s(Is; T (d))−Tc

∥∥∥2

2
+ λ (R(c) + R(d)) , (3)

whereMb
s(Is; δ) denotes the backward motion compensation that

transforms the rendered view Îs into the encoded reference view Î0

using the disparity map δ.

3. EFFICIENT OPTIMIZATION

3.1. Overview

The MSE term of (3) depends on the wavelet vectors c and d in very
different ways: it is quadratic in c but non-linear in d. Therefore, the
problem is solved using successive optimizations, first optimizing c

and then d. This way, we can design optimization techniques adapted
to each case. The optimization is initialized at high bitrate where the
MSE is virtually null, that is, Tc ≈ I0 andMb

s(Is; T (d)) ≈ I0.

3.2. Reference view

Assuming that the wavelet transform T is nearly orthonormal, like
the 9/7 wavelet used in JPEG 2000 [3] for instance, the optimization
(3) with regard to the image wavelet coefficients c can be rewritten
as

min
c

∥∥T−1
I0 − c

∥∥2

2
+ λR(c), (4)

for which JPEG2000 provides a near-optimal solution [3].

3.3. Disparity map

For simplicity, we present the case of one-dimensional disparity maps.
The procedure can be generalized to two-dimensional maps by ap-
plying it alternatively along the horizontal and vertical axes.

Since motion compensation is a non-linear function of the dis-
parity map, we cannot rely on the wavelet transform being nearly
orthonormal to simplify the problem. Instead, we take advantage of
the fact that quantized disparity maps take only a finite number of
disparity values. We then choose an integer wavelet transform and
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Fig. 1. Dependency graph of a two-level S transform. The coeffi-
cients in bold are those included in the wavelet vector d. Gray nodes
represent the MSE and rate terms of the RD optimization.

a rate model whose graph of dependencies is a tree, as shown in
Figure 1.

Disparity maps tend to be piecewise constant, so the Haar wavelet
transform is suitable to provide a compact representation. Since
quantized disparities are discrete, we choose an integer version of
the Haar transform, that is, the S transform [3]. It is defined as fol-
lows. Let l(j)n and h

(j)
n be two integer coefficients of the S transform

at level j, respectively low-pass and high-pass. Let l(j−1)
2n and l

(j−1)
2n+1

be two low-pass integer coefficients at the next finer level j−1. The
analysis operator of the S transform relates these quantities by⎧⎪⎪⎨

⎪⎪⎩
l(j)n =

⌊
l
(j−1)
2n + l

(j−1)
2n+1

2

⌋

h(j)
n = l

(j−1)
2n − l

(j−1)
2n+1

(5)

where �x� denotes the largest integer less or equal to x. At the finest
level, the high-pass coefficients are not defined and the low-pass
coefficients are equal to the disparity map, that is, l(0) = δ. The
wavelet vector d is made of the low-pass coefficients at the coarsest
level and all the high-pass coefficients.

For the rate model, we assume that all the wavelet coefficients
are independent of one another, the low-pass coefficients l at the
coarsest level following a uniform distribution and the high-pass co-
efficients h following a discrete truncated Laplace distribution with
zero mean and scale parameter b. Therefore, the rate (in bits) is ap-
proximated by

R(d) =
1

b log 2

L∑
j=1

Nn(j)−1∑
n=0

|h(j)
n |+ cst (6)

where cst is a term independent of d, L is the index of the coarsest
level and Nn(j) the number of high-pass coefficients at level j.

Let the quantized disparity map take integer values in the range
[0, Nδ − 1]. The backward motion compensation of view Is corre-
sponding to the pixel n of Î0 when its disparity ism takes the simple
form

Mb
s,n(Is; m) = Is,n+αsm+βs , (7)

where αs and βs depend on the camera parameters of the views.
For a fixed c, and thus a fixed Î0 � Tc, Equation (3) can be

written as

min
d

1

Nv

Nv−1∑
s=0

Nn−1∑
n=0

(
Mb

s,n(Is; δn)− Î0,n

)2

+ λR(d), (8)
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Fig. 2. Example of node-wise minimization for l(1)0 = 2 with Nδ =
5 and μ = 1. The error matrix J is the sum of the error vectors and
the rate matrix. The minimum is searched for among the values in
the gray boxes and is found in the dark-gray box.

where Nn is the number of pixels.
The MSE term can be factorized into a product of two matri-

ces: an error matrix E
(0), which shall serve as initialization of the

dynamic programming presented in the following section, and a se-
lection matrix S(δ). The entry E

(0)
m,n of the error matrix gives the

square error that the pixel n of Î0 would be associated with if it had
disparitym. That is,

E
(0)
m,n �

1

Nv

Nv−1∑
s=0

(
Mb

s,n(Is; m)− Î0,n

)2

. (9)

This error matrix is also called “disparity space image” [8] and is
independent of the disparity map δ. The selection matrix S(δ) is
made only of zeros and ones with exactly one one along each row.
The locations of the ones are given by the values of the disparity
map δ. The optimization (3) with regard to the disparity wavelet
coefficients d can then be written as

min
d

tr(S(T (d))E(0)) + μ
L∑

j=1

Nn(j)−1∑
n=0

|h(j)
n (d)| (10)

where tr denotes the trace operator and μ � λ/(b log 2).

3.4. Dynamic programming

Since the graph does not contain loops, the optimal solution can be
efficiently computed by grouping the terms of the summation in (10)
such that the large minimization becomes a recursion of small min-
imizations. This dynamic-programming approach consists of two
passes: one bottom-up which performs minimizations at each node
of the graph, followed by one top-down which backtracks through
the node-wise minimizations to find the globally optimal solution.

Let us define a rate matrix Rn,m � μ|n − m|, as shown in
Figure 2(a). At level j, the error matrix E

(j) is known and the error
matrix E

(j+1) at the coarser level is calculated. A matrixH
(j+1) of

high-pass coefficients is also computed to prepare the backtracking.
At the node connecting the low-pass coefficients l

(j)
2n and l

(j)
2n+1,

the algorithm creates a node-wise error-matrix J such that

J
l
(j)
2n

,l
(j)
2n+1

� E
(j)

l
(j)
2n

,2n
+ E

(j)

l
(j)
2n+1,2n+1

+ R
l
(j)
2n

,l
(j)
2n+1

. (11)

(a) λ = 5.9 × 10
−2 (b) λ = 6.5 × 10

−4

Fig. 3. DIBR of the Tsukuba set estimated at two RD slopes. The bi-
trate constraint limits spurious noise during the disparity estimation.
The quality of both the image and the disparity map varies according
to the available bitrate.

For each value m of the low-pass coefficient l
(j+1)
n at the coarser

level, it performs the minimization

min
l
(j)
2n

,l
(j)
2n+1

J
l
(j)
2n

,l
(j)
2n+1

such that
⌊

l
(j)
2n

+l
(j)
2n+1

2

⌋
= m, (12)

as shown in Figure 2(b). The value of the minimum is stored in
the entry E

(j+1)
m,n of the error matrix at the coarser level. The co-

efficients l
(j)∗
2n and l

(j)∗
2n+1 achieving this minimum give the optimal

value H
(j+1)
m,n that h(j+1)

n would take if the optimal value of l
(j+1)
n

wasm.
This process is repeated until the coarsest level L is reached.

At this point, the optimal low-pass coefficients l
(L)∗
n are obtained

by selecting the column-wise minimima of the error matrix E
(L).

This starts the backtracking of the top-down pass. At level j, the
optimal high-pass coefficients are given by h

(j)∗
n = H

(j)

l
(j)∗
n ,n

. The
synthesis operator of the S transform then gives the optimal low-pass
coefficients l

(j−1)∗
2n and l

(j−1)∗
2n+1 at the finer level. This procedure is

repeated until the finest level is reached.
It remains to estimate the optimal scale factor b. It is obtained

using a procedure akin to dichotomy. The procedure starts with a
given range for μ and an initial value of μ. It then iteratively finds
the optimal vector d, then the optimal scale factor b in the Kullback-
Leibler sense and finally the actual Lagrange multiplier λ. Each
time, the smoothness μ is adapted so that eventually the optimiza-
tions of both the image and the disparity map are performed using
the same Lagrange multiplier λ.

4. EXPERIMENTAL RESULTS

We present experimental results on two image sets, Tsukuba and
Teddy [8], displayed in Figures 3 and 4. Experiments were run in
the grayscale domain with intensity values in the range [0, 1]. Nine
views were used from the Tsukuba set and two from the Teddy set.

The proposed wavelet codec is compared to a codec based on
quadtrees [5–7]. Both codecs rely on the Kakadu JPEG2000 codec [3]
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(a) Image

(b) Disparity map – Wavelets (c) Disparity map – Quadtree

Fig. 4. DIBR of the Teddy sequence at λ = 4.5 × 10−3: image (a)
and disparity maps estimated using wavelets (b) or quadtrees (c).
Unlike quadtrees, wavelets enforce inter-block smoothness which
limits spurious noise.
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Fig. 5. Bitrate allocation on the Teddy set. The disparity map con-
sistently represents around 15% of the total bitrate.

to code the reference view and use therefore the same error matrix
E. They differ by their disparity model. Both favor variable-size
blocks with constant disparities but wavelets also favor inter-block
smoothness, while quadtrees do not. This explains why the dispar-
ity map in Figure 4 obtained using quadtrees contains much more
spurious noise. Reduced noise allows the rendering of novel views
further away from the reference view, therefore reducing the number
of pairs of reference views and depth maps needed to represent the
plenoptic function. Since neither quadtrees nor wavelets model oc-
clusions, both have issues in regions where they happen, like on the
left of the image or around the chimney for instance.

The improvement in disparity-map estimation brought by wavelets
translates in improved RD performances with improvements of up-to
1.3dB, as shown in Figure 6. Finally, Figure 3 shows the automatic
bitrate allocation: as the bitrate is reduced, the quality of both the ref-
erence view and the depth map is reduced. The allocation is actually
fairly stable across the range of bitrates with around 15% dedicated
to the disparity map, as shown in Figure 5.
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Fig. 6. RD performances of the DIBR codecs using either wavelets
or quadtrees on the Teddy set. The wavelet-based codec offers im-
provements of up to 1.3dB.

5. CONCLUSION

We have proposed a novel codec of the depth-image-based repre-
sentation based on rate-distortion optimization. Using wavelets lets
the encoder enforce the piecewise smoothness of the disparity map,
which reduces spurious noise. The optimization is efficiently solved
using dynamic programming and provides an automatic bitrate al-
location. The experiments on real data show a PSNR gain of up-to
1.3dB and a bitrate allocation stable across the range of bitrates with
around 15% dedicated to the depth map.
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