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ABSTRACT

We examine the trade-off between lifetime and distortion in im-
age sensor networks deployed for gathering visual information over
a monitored region. Users navigate over the monitored region by
specifying a viewpoint that varies with time, and the network at-
tempts to meet the user requirement by synthesizing the desired
view using a selection of cameras. We compare two camera selec-
tion methods, the first maximizes PSNR for the user’s view without
considering the cameras’ available energy whereas the second uses
knowledge of available energy at the cameras to maximize network
lifetime. Our simulation results demonstrate a clear trade-off be-
tween the two strategies, with selection based on energy alone per-
forming up to 3 dB worse initially than the PSNR based selection
yet providing significantly higher coverage lifetime. In addition, we
observe that under a fixed total energy constraint, more cameras with
lower energy per node are preferable over fewer cameras with higher
energy per node. Our results suggest that a hybrid or adaptive cam-
era selection algorithm may provide the optimal lifetime-distortion
trade-off.

Index Terms— image sensor network, network lifetime, cover-
age estimation, energy allocation

1. INTRODUCTION

Image sensor networks have recently emerged as an area of research
interest with multiple applications [1, 2, 3]. We examine applica-
tion scenarios where these networks are deployed in order to allow a
user to navigate around the monitored region by specifying a desired
viewpoint (position and direction) that varies over time. The user’s
viewpoint determines the part of the scene that should be captured
and displayed. Desired view at this viewpoint is synthesized by com-
bining parts of images from selected cameras. Fig. 1 illustrates such
a telepresence system in the context of an art gallery.

While the problem of node (camera) selection in these networks
has received some attention based on consideration of coverage and
network lifetime [4, 5], the trade-off that these approaches entail in
terms of image quality has not been hitherto addressed. In this pa-
per, we examine the trade-off between image quality and network
lifetime under different camera selection methods. The problem of
energy allocation in such image sensor networks is also explored.
Given the total amount of available energy, we compare different
energy allocation schemes in terms of network lifetime.

This work is supported in part by the National Science Foundation under
grant number ECS-0428157.

2. SYSTEM SCENARIO

We assume that the image sensor network consists ofN battery pow-
ered cameras and that the monitored region can be decomposed into
planes (such as within an art gallery). We focus on a single plane in
order to simplify the analysis.

In the initialization step, the geometry of the cameras can be es-
timated with minimum manual setup by flexible camera calibration
techniques [6, 7]. For the individual cameras, coverage on the tar-
get is then estimated by projecting world points onto their respective
image planes. To provide the image data at user’s viewpoint, a sub-
set of cameras is selected and image blocks from the cameras are
suitably warped and mosaiced, using the calibration information, to
synthesize the desired view. These steps are individually elaborated
in the following subsections.

2.1. Initialization

Camera Calibration: Using a homogeneous representation, the im-
age coordinatem of a 3D pointM is given by [8]:

m3×1 = K3×3[R|t]M4×1 = P3×4M

where K consists of 5 intrinsic parameters of the camera (such
as focal length), R and t stand for the rotation and translation of
the camera, respectively, and P = K[R|t] is called the camera
projection matrix. Camera calibration is used to estimate the
parameters K, R and t. The Plane-Based algorithm [6] can be
used for camera calibration. Although this algorithm is designed to
calibrate a single camera, it can be extended to calibrate multiple
cameras with varying intrinsic parameters [7].

Coverage Estimation: The coverage of each camera’s view on a tar-
get plane can be obtained from the camera geometry. A world point
is covered by a camera if the point lies within the FoV (field of view)
of the camera. Fig. 2(a) shows an example of coverage estimation

Fig. 1. Gallery monitored by a visual network: the desired view specified
by user is synthesized from selected cameras.
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(a) (b)

Fig. 2. (a) 2D coverage, and (b) 3D coverage where the 3D space is
divided into cubes. Black: 0-coverage, Red: 1-coverage, Green: 2-coverage,
Blue: 3-coverage, White: 4-coverage. The reader is referred to the electronic
version of this paper for the best visual effect.

for a planar object. This method is readily extended to 3D space, as
shown in Fig. 2(b).

2.2. Camera Selection

PSNR Cost (MaxPSNR): The first method of camera selection
aims to maximize the resulting mosaiced image’s quality, which is
measured by PSNR. The desired view is divided into blocks for ease
of analysis. For each block, the corresponding regions in the other
cameras are transformed and compared with the ground-truth (avail-
able in the simulation). For each block, the camera that provides the
highest PSNR is selected for transmitting the corresponding region.
Although this method is feasible only in simulation, it provides an
upper-bound on the achievable PSNR of the reconstructed images
and helps quantify the trade-off between image quality and lifetime
of the network.

View Angle Cost (MinANG): The MaxPSNR approach requires use
of the ground-truth image of the desired view, yet this only exists
in simulation. We approximate MaxPSNR by selecting the cameras
that have the most similar viewing directions with user’s viewpoint
at each block. This approximation is justified since our simulated
art gallery scenario sets all cameras at the same distance from the
target plane so that the resolution of the cameras on the target plane
are similar, and thus image quality is affected primarily by viewing
direction.

Coverage Cost (MaxCOV): The coverage cost metric considers the
camera’s importance to the monitoring task. Assuming each camera
si has remaining energy Er(si), i ∈ 1 . . . N , the set of cameras that
cover the point (x, y) is described as {sj | (x, y) ∈ FoV (sj), j ∈
1..N}. We define the total energy available for the monitoring task
at (x, y) as [4]:

Etotal(x, y) =
∑

{sj |(x,y)∈F oV (sj)}

Er(sj) (1)

The coverage cost of a camera si is then defined as the sum of
inverses of the energies at all points covered by si:

COST (si) =
∑

{(x,y)|(x,y)∈F oV (si)}

1

Etotal(x, y)
(2)

Given this definition of coverage cost, those cameras that have
large overlapping FoVs with other cameras have small cost and
therefore are selected more frequently than those cameras that solely
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Fig. 3. Homography between multiple views.

cover a part of the monitored scene. Thus selection of cameras with
minimal cost results in a longer network lifetime.

2.3. Image Mosaicing

Once the image parts are selected from different cameras, they must
be transformed to the desired view and mosaiced together. Our
image mosaicing application differs from conventional applications
(for example [9]) because we select regions from different images to
generate the desired view instead of stitching together images.

Without loss of generality, we assume the monitored plane is at
Z = 0, and thus the image coordinatem of a 3D pointM is: m ∼
H3×3M, where ∼ indicates equality up to a scale factor and H is
the homography [8] between the camera plane and the target plane
Z = 0. H can be calculated from the result of camera calibration,
as discussed in Sec. 2.1. Multiple projections of the same point are
connected as shown in Fig. 3:

M = H
−1
1 m1 = H

−1
2 m2,

m1 = H1H
−1
2 m2 = H21m2

This relation allows the image plane at user’s viewpoint to be ren-
dered from corresponding regions in the cameras selected according
to the metrics described in Sec. 2.2.

3. SIMULATION RESULTS

We simulate a monitored plane of size 4m × 3m (typical size of a
wall). To simulate ad hoc deployment, N cameras are placed ran-
domly within a 4m × 3m field located 3m from the target plane,
and the cameras are pointed toward the target plane with a random
rotation within ±0.1 radian along each of the X, Y, Z axes to sim-
ulate practical variability in camera placement. Pixel values at non-
integer locations are generated by bilinear interpolation. All cam-
eras (including the user’s viewpoints) are assumed to have images of
200× 200 (in pixel units), with a focal length f0 = 218.75 (in pixel
units). For an image sensor with size 20mm × 20mm, this would
correspond to focal length of f0 = 21.875mm.

We first conduct a Monte Carlo simulation in order to determine
the number of cameras required in order to provide adequate cov-
erage of the target plane. Fig. 4 shows the average (over 200 sim-
ulations) coverage percentage achieved over the target plane upon
initial deployment of the cameras as a function of the number of
cameras for different focal lengths f . We see that using a focal
length f = f0 = 218.75 (in pixel units), a minimum of 18 cam-
eras are necessary in order to ensure that the target plane is covered
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Fig. 4. Average percentage of coverage on the target plane vs. the number
of cameras. An increase in focal length results in a decrease in the percentage
of coverage.

(i.e., each point in the target plane is within the FoV of at least one
camera) with a confidence of 99.5%. As expected, an increase in
focal length results in a decrease in the percentage of coverage for a
given number of cameras. For the remainder of the simulations, we
use a focal length f = f0.

The user’s viewpoints are represented in our simulations by a
random walk on a 16 × 16 grid in the plane of the cameras starting
at the center (x = 2m, y = 1.5m, z = 3m). Subsequent view-
points are chosen from the neighboring 8 grid points and the current
position (9 choices in total) with equal probability, and the user’s
views are assumed to be directed toward the target plane with ran-
dom rotation within±0.1 radian along each of theX, Y, Z axes. We
generate 100 user’s viewpoints in each simulation. All images in the
simulation are rendered by ray tracing. Fig. 9 shows a snapshot of
the images generated in the simulation.

3.1. Coverage

In this simulation, all cameras begin with 3J of energy, which corre-
sponds to each camera being able to transmit 3 full frames of images.
In order to increase coverage redundancy and prolong network life-
time, we use twice the minimum number of cameras necessary for
full coverage, i.e.,N = 36. The results presented represent averages
over 10 simulations.

Fig. 5 shows the percentage coverage on the target plane over
time for the different camera selection methods. From the figure we
see that MaxCOV camera selection prolongs the 95% coverage life-
time of the network by a factor of 1.5 compared to MinANG and
1.3 compared to MaxPSNR. MaxCOV distributes energy consump-
tion more evenly across the cameras, which keeps the percentage of
coverage higher. However, MaxCOV may generate a sharp drop in
coverage when cameras die out since multiple cameras may run out
of energy at the same time.

3.2. PSNR

The PSNR of the mosaiced image using the three camera selection
methods is shown in Fig. 6 as a function of time. Initially, Max-
COV results in the lowest SNR, with MinANG performing about
1dB better and MaxPSNR performing the best (roughly 3dB better
thanMaxCOV). However, as time progresses the MaxPSNR andMi-
nANG strategies lose coverage earlier than MaxCOV, and MaxCOV
in fact provides the better PSNR as compared to the other methods.
This demonstrates the advantage of using the MaxCOV metric in an
energy-limited scenario.
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Fig. 5. Percentage of coverage on the target plane over time. The values on
the X-axis are the numbers of observations, which is equivalent to time.
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Fig. 6. PSNR of the mosaiced image at the user’s viewpoint.

Fig. 7 shows PSNR values as a function of time for the scenario
where cameras have infinite energy. Since all three methods retain
full coverage here, MaxPSNR gives better image quality, by about
3dB compared to MaxCOV and 1dB compared to MinANG. Figs. 7
and 6, clearly demonstrate the trade-off between the quality of the
mosaiced image and the lifetime of the network. Fig. 9 is a snapshot
of the mosaiced output using each of the camera selection methods.

3.3. Energy Distribution

We also explore the impact of allocating a fixed amount of energy
(108J) evenly among 18, 36, 54 and 108 cameras in our simulations
and the resulting impact on network lifetime, which is defined as the
time duration for which coverage is maintained for at least 95% of
the target plane. Fig. 8 shows the network lifetimes obtained for
these different allocations.

We observe that by increasing the number of cameras, the energy
is more evenly distributed in the monitored space and thus the net-
work lifetime is prolonged assuming the user’s viewpoints are also
evenly distributed. In all cases, MaxCOV performs better in terms
of network lifetime then MaxPSNR and MinANG. The variances in
MaxCOV are smaller than those in MinANG and MaxPSNR, which
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Fig. 7. Image quality when cameras have infinite energy.
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Fig. 8. Different energy allocation with a total energy of 108J . Simu-
lation results are averaged on different camera geometries, while the user’s
viewpoints remain the same.

means the performance of the visual network is less sensitive to the
user’s viewpoints using MaxCOV. The variances of network lifetime
of all three methods decrease when more cameras are deployed, and
thus increasing the number of cameras not only prolongs network
lifetime, it also reduces the uncertainty in lifetime obtained under
different use instances.

4. DISCUSSION AND CONCLUSION

In this paper we highlighted the trade-off between the network life-
time of an image sensor network and the distortion in the recon-
structed images using simulations. In order to keep the complex-
ity manageable, our simulations in the present work use a relatively
simple application scenario and simple camera and scene geometry
models that allow us to analytically perform mosaicing. The simu-
lation results quantify the performances of various camera selection
approaches under ideal scenarios and lead to several useful qualita-
tive observations:
i) Camera selection for optimal image quality can offer significant
improvements when energy considerations do not predominate (up
to 3dB PSNR improvement in our simulations). However, in sce-
narios where energy is limited, the performance of these methods

(a) (b) (c) (d)

Fig. 9. A snapshot of images rendered in the simulation. (a) Real image at
a given viewpoint, (b) Mosaiced image using MinANG, PSNR = 43.956, (c)
Using MaxCOV, PSNR = 43.432, and (d) Using MaxPSNR, PSNR = 45.053.

deteriorates rapidly after the initial period, once coverage loss oc-
curs. In these cases, using an energy-aware camera selection scheme
significantly prolongs network lifetime at the cost of some sacrifice
in the initial image quality.
ii) For a constant total energy budget, the use of a larger number of
camera nodes (with lower initial energy per node) is preferable over
a smaller set of camera nodes (with higher initial energy per node).
This indicates that there is good reason to deploy larger numbers of
small battery-based image sensors as compared to a smaller subset
of cameras with more battery power.
iii) The relatively large disparity between the MaxPSNR and Max-
COV methods, along with the relatively poor lifetime performance
of the MinANG heuristic, emphasize the need for research on cam-
era selection algorithms that offer better choices in the lifetime-
distortion trade-off. For example, a hybrid camera selection method
that combines the MinANG and MaxCOV metrics or an adap-
tive camera selection algorithm that switches from MinANG to
MaxCOV when camera energy diminishes, may better balance the
lifetime-distortion trade-off than the techniques discussed here.

In actual practice, we recognize that applications will often re-
quire 3D coverage of complex scenes, and for actual sensors with
imaging distortions, greater sophistication and computation will be
required in image processing (e.g., for mosaicing). Our future work
aims at extending our current analysis along these directions.
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