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ABSTRACT 
 
Recently, ‘entry/exit’ events of objects in the field-of-views 
of cameras were used to learn the topology of the camera 
network. The integration of object appearance was also 
proposed to employ the visual information provided by the 
imaging sensors. A problem with these methods is the lack 
of robustness to appearance changes. This paper integrates 
face recognition in the statistical model to better estimate the 
correspondence in the time-varying network. The statistical 
dependence between the entry and exit nodes indicates the 
connectivity and traffic patterns of the camera network, 
which are represented by a weighted directed graph and 
transition time distributions. A nine-camera network with 25 
nodes is analyzed both in simulation and in real-life 
experiments, and compared with the previous approaches. 
 
Index Terms— camera network, topology, statistical model 
 

1. INTRODUCTION 
Networks of video cameras are being envisioned for a 
variety of applications and many such systems are being 
installed. However, most existing systems do little more than 
transmit the data to a central station where it is analyzed, 
usually with significant human intervention. As the number 
of cameras grows, it is becoming humanly impossible to 
analyze dozens of video feeds effectively. Therefore, we 
need methods that can automatically analyze the video 
sequences collected by a network of cameras. 

    Most work in image processing has concentrated on a 
single or a few cameras. While these techniques will be 
useful in a networked environment, more is needed to 
analyze the activity patterns that evolve over long periods of 
time and large swaths of space. Recently, there has been 
some work on understanding the topology of a network of 
non-overlapping cameras [1][2][3][5] and using this to infer 
about activities viewed by this network [6]. The authors in 
these papers proposed an interesting approach for modeling 
activities in a camera network. They defined either the 
entry/exit points in each camera or single cameras as nodes 
and learned the connectivity between these nodes. This 
provided an understanding of the paths that can be followed 
by objects within the field of view of the network of 
cameras. We build upon these ideas to develop a method for 
learning the network topology in an unsupervised manner by 

integrating identity and appearance information. The paper 
does not deal with how to optimally place these cameras; it 
focuses on how to infer the connectivity given fixed 
locations of the cameras. We now highlight the relation with 
the existing work and the main contributions of this paper 
along these lines. 
 

2. RELATED WORK AND CONTRIBUTIONS 
There is a lot of work on camera calibration and the 
topology inference of camera networks under the assumption 
of known data correspondence, which is not always 
guaranteed in the real-life environment. With respect to the 
increasing use of non-overlapping cameras in distributed 
camera networks, there is the need for new methods to relax 
the assumption. Makris et al. [1] proposed to use the 
temporal correlation of departures (i.e., ‘exit’) and arrivals 
(i.e., ‘entry’) to infer the network topology with unknown 
correspondence. Kieu et al. [3] used the information 
theoretic-based statistical dependence to infer the camera 
network topology. They proposed to integrate out the 
uncertain correspondence using Monte Carlo Markov Chain 
method. Marinakis et al. [5] used the Monte Carlo 
Expectation-Maximization (MC-EM) algorithm to simul-
taneously solve the data correspondence and network 
topology inference problems. 

All these approaches take only the discrete departure 
and arrival events as input. To employ the abundant visual 
information provided by the imaging sensors, Niu and 
Grimson [2] proposed an appearance-integrated cross- 
correlation model for topology inference on the vehicle 
tracking data. However, appearances may be deceiving when 
the objects in the applications are humans. For 
example, clothing of different subjects is similar (e.g., Fig. 
1(a) and (c)), or appearance changes of the same subject 
under different illumination may be significant (e.g., Fig. 
1(a) and (b)).  

In Fig. 1, the clothing of the subjects is similar, and the 

Figure 1. An example of false appearance similarity information. two 
subjects (‘A’ and ‘B’) are monitored by two cameras (‘1’ and ‘2’).  

(a) A in camera 1         (b) A in camera 2          (c) B in camera 2 
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illumination of the two cameras is different. The 
Bhattacharyya distances between the RGB color histograms 
of the extracted subjects in the above three frames (‘a,’ ‘b,’ 
and ‘c’) are calculated to identify the subjects: 
d(a,b)=0.9097; d(a,c)=0.6828, which will establish a false 
correspondence between ‘a’ and ‘c.’ 

Therefore, we propose a principled approach to 
integrate the appearance and identity (e.g., face) to enhance 
the statistical dependence estimation for topology inference.  

The main contribution of the paper is: integrating 
appearance and identity for learning network topology. The 
work in [2] uses the similarity in appearance to find 
correlations between the observed sequences at different 
nodes. However, appearances may be deceiving in many 
applications as in Fig. 1. For this purpose, we integrate 
human identity (e.g., face recognition in our experiments) 
whenever possible in order to learn the connectivity between 
the nodes. We provide a principled approach for doing this 
by using the joint statistical model of appearance and 
identity to weight the cross-correlation. We show thorough 
simulation and real-life experiment results about how adding 
identity can improve the performance significantly over 
existing methods. 

 
3. TECHNICAL APPROACH 

In this section, we will show how to determine the camera 
network topology by measuring the statistical dependence of 
the nodes with the appearance and identity. The proposed 
approach to network topology inference is illustrated in the 
block diagram in Fig. 2. 

3.1. Camera Network Topology  
The nodes in our network architecture denote the entry/exit 
points in the field-of-views (FOVs) of all cameras in the 
network as in [1]. They can be manually chosen or 
automatically selected by clustering the ends of object 
trajectories [1]. If they are in the same FOV or in the 
overlapped FOVs, it is easy to infer the connectivity 
between them by checking object trajectories through the 
views. In this paper, we focus on the inference of 
connectivity between nodes in non-overlapping FOVs, 
which is blind to the cameras. The camera network topology 
is represented by a weighted, directed graph with nodes as 
entry/exit points and the links indicating the connectivity 
between nodes (as shown in Fig. 3). 

Suppose we are checking the existence of the link from 
node i to node j. We observe subjects departing at node i 
and arriving at node j. The departure and arrival events are 
represented as temporal sequences Xi(t) and Yj(t), 
respectively. We define AX,i(t) and AY,j(t) as the observed 

appearances in the departure and arrival sequences, 
respectively. The identities of the subjects observed at the 
departure node i and at the arrival node j are IX,i(t) and IY,j(t), 
respectively. 

To alleviate the sole dependence on appearance, which 
may be deceiving as shown in Fig. 1, we propose to use the 
appearance and identity information together to weight the 
statistical dependence between different nodes, i.e., the 
cross-correlation function of departure and arrival Xi(t) and 
Yj(t): 

 
     (1) 

where f is the statistical model of appearances and identity, 
which implicitly indicates the correspondence between 
subjects observed in different views. The components and 
joint models of f are presented in the following sub-sections. 
From now on, we assume departure and arrival nodes are 
always i and j, respectively, so that the subscripts i and j can 
be omitted. 
 
3.2. Statistical Model of Identity 
The working principle of the human identification is as 
follows: 1) detect the departure/arrival subjects and apply 
image enhancement techniques if needed (e.g., the super-
resolution method for face recognition); 2) the subjects 
departing from node i are assigned unique identities IX(t) and 
used as the gallery; 3) the identities of the subjects arriving 
at the node j (i.e.,   ) are verified by comparing it with all 
subjects in the gallery: 
 
 
where sim(IY , IX) is the similarity score between IY and IX, 
and SID(.) is the highest similarity score associated with the 
identified identity. 

We use a k-component mixture of Gaussian distribution 
(e.g., as shown in Fig. 4) to model the similarity scores of 
identities (SID): 
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Figure 2. The block diagram of the proposed method. 
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Figure 3. Topology graph of the deployed camera network. 
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where k is the number of components, m, m and m
2 are the 

weight, mean and variance of the mth Gaussian component, 
and ‘X=Y ’ means that they correspond to the same subject. 

The unknown parameters {k, m, m, m
2} can be 

estimated by using the EM algorithm [4] in face recognition 
experiments on a large data set. The mixture of Gaussians 
(as the solid line in Fig. 4), which has four components (as 
dotted lines in Fig. 4), is obtained by using the EM 
algorithm in the identification experiments [7].  

 
3.3. Statistical Model of Appearance Similarity 
We employ the comprehensive color normalization (as in 
[2]) to alleviate the dependence of appearances on the 
illumination condition. Then, the color histograms in the hue 
and saturation space, i.e., h and s, respectively, are 
calculated on the normalized appearance. Note that we do 
not incorporate the size information in the appearance 
metrics because the human subjects do not vary much in 
size. We normalize the sizes (i.e., heights and widths) of the 
extracted subjects before calculating color histograms. 

Next, a bi-variate Gaussian distribution is fitted to the 
color histogram similarity between the two appearances: 
where h,s and h,s are the mean and covariance matrix of the 
color histogram similarity, which are learned by using the 

EM algorithm on the labeled training data. 
 
3.4. Joint Model of Identity and Appearance Similarity 
By integrating the above statistical models of appearances 
and identity, the statistical model f in Eq. 1 can be updated 
as the joint distribution of identity and appearance similarity, 
which are collectively denoted as S={hX - hY, sX - sY, SID}: 
 

   (5) 
 
 

In Eq. 5, the joint distribution is the product of the 
marginal distributions of each under the assumption that the 
appearance and identity are statistically independent. For 
each possible node pair, there is an associated multi-variate 
mixture of Gaussians with unknown mean and variance, 
which are estimated by using the EM algorithm. We can 
even relax the independence assumption provided that we 
have enough training samples to learn the covariance matrix 
of the joint distribution. 

Then, the cross-correlation function of departure and 
arrival sequences in Eq. 1 is updated as: 

 
 

3.5. Network Topology Validation 
The mutual information between two temporal 

sequences ([2]) reveals the dependence between them: 
 

 
 
 

Thus, we can use the mutual information as “threshold” 
to validate the existence of links identified in the previous 
cross-correlation model. The normalized mutual information 
is used as the weight of the links in the topology graph: 

 
 
 

4. EXPERIMENTAL RESULTS 
We tested our proposed approach in simulation and in real-
life experiments, and compared it with the appearance-
integrated approach [2], when applicable. 
 
4.1. Simulated Experiments 
The simulation is based on the network architecture 
illustrated in Fig. 3. Since we focus on the connectivity 
inference in non-overlapping FOVs, the nodes with all 
connections within the same FOV are omitted. Thus, the 
simulated network has 18 departure/arrival nodes and 13 
valid directed links. Some nodes, e.g., node 11, work as both 
‘departure’ and ‘arrival.’ Some node pairs, e.g., 6 and 22, 
have two uni-directional links, which models the asymmetric 
traffic between the throughput nodes such as doors. The 
traffic data of 100 points is generated by a Poisson(0.1) 
departure process, and the transition time follows Gamma 
distributions, e.g., Gamma(100, 5), Gamma(25, 2.5), etc. 
The probability of identity similarity PID is generated by a 
mixture of Gaussians as shown in Fig. 4. For simplicity, the 
probability of appearance similarity Papp is modeled by a 
uni-variate Gaussian N(0, 1). 

The proposed approach is tested on the simulated traffic 
data. We assume all the transition time distributions are 
single-mode. The cross-correlations with the appearance and 
identity (as in Eq. 6) for three valid and three invalid links 
are shown in Fig. 5(a) and (b), respectively. For comparison, 
Fig. 5(c) and (d) show the appearance-based cross-
correlations [2] for the same valid and invalid links, 
respectively. It can be found that our approach can highlight 
the peaks for the valid links and repress fluctuations for the 
invalid links, which greatly improves the peak signal-to-
noise ratios of the estimation. 

As to the link validation, we calculate the mutual 
information of departure and arrival sequences at various 
nodes and show the adjacency matrices in Fig. 6(a, b). Based 
on the adjacency matrices, the topology graph is inferred as 
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Figure 4. The Gaussian mixture model of the identity similarity. 
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(a)                              (b)                                (c)            
Figure 8. An example of false correspondence by appearance 
similarity metrics between different subjects. (a, b): one subject 
observed at nodes 16 and 6, respectively; (c): the other one at 
node 4. 

shown in Fig. 6(c). In addition to the thirteen valid links 
(marked as solid arrows), the appearance-based approach [2] 
also generates nine invalid links (as the dashed arrows in 
Fig. 6(c)), which are mainly associated with the throughput 
nodes, e.g., 11, 12 and 18. 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2. Real-life Experimental Results 
The experimental setup of the distributed camera network is 
illustrated in Fig. 7. As in the simulation, it has the same 
topology graph as shown in Fig. 3.  Within it, there are nine 
cameras, in which six are on the tables (marked as circles) 
and three are on the ceiling (marked as triangles), distributed 
in two rooms on two floors. There are four doors monitored 
by four cameras, where the heavy traffic occurs. There are 
also some barriers in the rooms that constrain possible paths. 

We collected data on a set of ten subjects: each person 
walked through the monitored environment ten times, totally 
100 observations. The identification system is under 
construction so that we simulated the identity similarity 
distribution according to the mixture of Gaussians as in Fig. 
4. After a manual selection of entry/exit points in each FOV 
(as ellipses in Fig. 7), the object detection and tracking were 
employed to detect the departure and arrival events. 
Subsequently, the probability of the appearance similarity 
was calculated as in sub-section 3.3, and the probability of 
the appearance similarity Papp was calculated based on the 
estimated distribution from the labeled training data. 

The proposed approach was tested on the real-life data 
to infer the network topology. It successfully recovered the 
topology of the camera network without any false link. 
However, the appearance-based approach [2] established 
several false links, to name a few, ‘2 to 6’ and ‘4 to 16,’ by 
accumulating false correspondences. For example, in Fig. 8, 

(a) and (b) are the same subject observed at nodes 16 and 6, 
respectively, and (c) is another subject at node 4. Their 
identities (i.e., faces) are shown in the corner of each frame. 
Unfortunately, the false correspondences ‘a=c’ and ‘b=c’ are 
established by using the appearance similarity metrics. 
Therefore, the false links ‘4 to 6’ and ‘4 to 16’ are inferred 
by accumulating these false correspondences. 

5. CONCLUSIONS 
Unlike the existing methods that used discrete events or 
appearance information to infer the network topology, this 
paper integrates identity with the appearance and provides 
statistical models to learn the dependences between nodes. 
Experiments in both simulation and real-life tests are 
performed that demonstrate the underlying proposed theory. 
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  (a)                             (b)                                (c) 
Figure 6. The adjacency matrices of mutual information: (a) by our 
approach; (b) by the previous approach in [2]; (c) the inferred 
topology graph.  

Figure 5. The estimated cross-correlations. (a, b) our proposed 
approach, (c, d) the previous approach in [2]. (a, c) are for valid 
links and (b, d) for invalid links.  

(a)                                                  (b) 

(c)                                                  (d) 
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