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ABSTRACT 

We address the problem of unusual-event detection in a video 
sequence. Invariant subspace analysis (ISA) is used to extract 
features from the video, and the time-evolving properties of these 
features are modeled via an infinite hidden Markov model (iHMM), 
which is trained using “normal”/“typical” video data. The iHMM 
automatically determines the proper number of HMM states, and it 
retains a full posterior density function on all model parameters. 
Anomalies (unusual events) are detected subsequently if a low 
likelihood is observed when associated sequential features are 
submitted to the trained iHMM. A hierarchical Dirichlet process 
(HDP) framework is employed in the formulation of the iHMM. 
The evaluation of posterior distributions for the iHMM is achieved 
in two ways: via MCMC and using a variational Bayes (VB) 
formulation.

Index Terms—Hidden Markov models, Dirichlet process, 
Variational Bayes 

1. INTRODUCTION

The automatic detection of infrequent events is a problem that has 
recently attracted considerable attention. Such events are often 
referred to as being unusual, abnormal or rare [1, 2]. Anomaly 
detection, in the context of computer vision, is the process whereby 
a baseline of normal behavior is established with deviation from 
this norm triggering an alert.   

We utilize the infinite hidden Markov model (iHMM) 
framework [3] to model the sequential characteristics of typical 
video, and employ invariant subspaces as features based on an 
invariant-subspace analysis (ISA) [4]. Motivated by the desire to 
handle complex scenes, feature extraction is not performed on 
elements (e.g., moving objects) within the scene, but on the entire 
scene; for complex environments, involving multiple and 
overlapping moving entities, feature extraction linked directly to 
such objects is often difficult, and therefore this step is avoided 
here entirely. In our work there is also no initial step of background 
subtraction or removal. 

To address the complexity of time-series data, as in video, 
parametric techniques such as state-space models and differential-
equation models have been employed [5, 6]. The approach outlined 
in this paper uses a semi-parametric HMM formulation, for which 
the form of the model (the HMM) is specified, but the number of 
underlying states is addressed non-parametrically. 

Approaches utilizing HMMs have been shown to be effective in 
video detection, but are hampered by having to choose model 
architectures with appropriate complexities [7]. Typically, state 
decomposition has been performed in an ad-hoc manner [8], 

requiring trial and error for manually selecting the model structure, 
(e.g., number of states). Concerning the iHMM considered here, 
there are in principle an infinite number of parameters in the 
transition matrix and observation matrix [9], although in practice 
the posterior density function on the number of states is peaked 
about a finite number of states characteristic of the data. We 
therefore avoid the problem of selecting a fixed number of HMM 
states. The iHMM was first introduced in [3], and to our 
knowledge this paper represents its first use in video analysis. 
Moreover, in [3] the inference was performed using MCMC, where 
here (we believe for the first time) variational Bayesian [10] 
inference is also considered. 

2. INVARIANT SUBSPACE ANALYSIS 

A traditional approach for video-based feature extraction is to use 
linear transformations, for which a given feature is computed as the 
inner product of the input data with a particular basis. A problem 
with linear features is their lack of invariance with respect to 
spatial shifts or phase changes. Kohonen [11] developed the 
concept of invariant-feature subspaces as an abstract approach to 
representing features. This concept states that one may consider an 
invariant feature as a linear subspace in a feature space. The value 
of the invariant feature is given by the norm of the projection of the 
given data point on that subspace. A feature subspace can be 
represented by a set of orthogonal basis vectors ,tw dt ,...,1 ,
where  is the dimension of the subspace (in our case ).
Therefore the value of the invariant feature in any given subspace 
is given by  
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where  is a vector of observed variables (in our 

case an image defined by a vector of pixel gray levels) and 
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denotes an inner product. This is equivalent to computing the 
distance between the input vector x  and a general linear 
combination of the basis vectors  of the feature subspace.  tw

Learning the independent feature subspace representation can be 
achieved by gradient ascent of the log-likelihood of the data 
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where  is the size of the data (number of images in the video 

sequence ),  is the number of independent feature 

subspaces,  represents the set of indices of the ’s
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belonging to the subspace of index j , and W  is a matrix 
containing the filters ’s as its columns. For the probability 
density we choose a multidimensional version of the exponential 
distribution
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where the scaling constant  and the normalization constant 
are determined so as to give a probability density compatible with 
the constraint of unit variance of the .inv

js
A stochastic gradient ascent of the log-likelihood is obtained as 
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where  is the index of the subspace to which  belongs to, 

and
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2
1

)( uug . After every step of (4) the ’s are 
orthonormalized; for a variety of methods to perform this, see [12].  
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In Section IV we compare the effectiveness of the ISA against 
two popular methods for video feature extraction: shift-invariant 
wavelets (SIW) [13] and independent component analysis (ICA) 
[13]. It is important to note that each of these feature-extraction 
techniques process the entire scene under test directly; there is no 
initial step associated with extracting (for example) moving entities. 
This is avoided because of its difficulty and inaccuracy for 
complex scenes involving multiple overlapping moving entities 
(with potentially unanticipated shapes). 

         
3. INFINITE HIDDEN MARKOV MODEL

Consider  groups of data, denoted ; the statistics of 
each group of data is modeled via a mixture model. As is usually 
done, we here assume a Gaussian mixture model (GMM). A 
Dirichlet process (DP) model [9] is used to non-parametrically 
learn a GMM separately for each of the N  data sets. The data-
group-dependent DP encourages clustering; data within the same 
cluster, or mixture component, are shared when learning the 
associated mixture-component parameters, and the appropriate 
sharing/clustering mechanism is determined by the algorithm. In a 
hierarchical DP (HDP) [9] the base distributions of each of the 
DPs are drawn from a shared DP, and this encourages appropriate 
sharing of data between the  data sets.   
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To construct an HDP, a probability measure  is drawn from a 

DP with precision parameter 
0G

 and base distribution H
)(0 HDPHG ,~,| .            (5) 

The distribution  serves as the base distribution for the  DPs 
associated with the  data sets:  

0G N
N

)( 00 GDPGG j ,~,| ,            (6) 
where  is the data-set-dependent precision parameter, which is 
here kept as the same for all data sets, for simplicity. Since  is 
discrete with probability one, it is guaranteed that all  will use 

the same set of mixture components defined in , but in different 
proportions.
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One may summarize the following properties of the HDP. For 
each of the N  data sets considered, we learn an associated GMM. 

The parameters of the mixture components are shared across the 
 data sets, but the mixture weights are distinct. By the 

construction of DP, each of the mixture components has, in 
principle, an infinite number of components. This suggests the use 
of such a model in an HMM, for which the state-dependent 
observation probabilities are modeled by single Gaussians. One of 
these GMMs is used to represent the probability of the next 
observation, given the current HMM state occupied [9]. Since each 
GMM has an infinite number of components, each now linked to 
an associated HMM state, the HMM in principle has an infinite 
number of states. The sharing of state-dependent parameters across 
the mixture components is critical to realizing the appropriate form 
of the HMM. While in principle there are an infinite number of 
states, as constituted by the HDP prior, the available training data 
yields a posterior that is distributed around a finite number of states. 
The iHMM does not select one – fixed – number of states, but 
maintains a full posterior.    

N

As in conventional HMMs, the data associated with the iHMM 
are the observations . If the previous (hidden) 

state visited is , then the probability of observation 
corresponds to a unique one of the aforementioned GMMs, jointly 
representing the probability of transiting from state  and then 

observing ; the associated mixture weights correspond to the 

probability of transitioning to the respective next state  (each 
mixture component representative of a particular state) and the 
associated Gaussian defines the probability of the observing .
The iHMM may be summarized in the following hierarchical 
manner     
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where each observation is generated independently as ,)(
tst Fo ~

)(F  is a Gaussian density and the random weight variables 
 use a Beta distribution to partition a unit-length 

stick as follows  
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The evaluation of posterior distributions for the iHMM was 
achieved in [14] using a Markov chain Monte Carlo (MCMC) 
method; we here consider MCMC inference as well as an 
approximate and efficient variational Bayes (VB) formulation.  

From Bayes’ rule, we have 
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where }{ m,z,  are hidden variables of interest (

denote the mixture component associated with  and 

 denote the number of clusters using the same 

mixture component k  within a group 
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hyper-parameters that determine the distribution of the model 
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parameters (below we discuss the placement of hyperpriors [14] on 
 and ). Instead of directly estimating , variational 

methods seek a distribution  to approximate the true posterior 
distribution . Consider the log marginal likelihood   
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))()(( O,||| pqDKL  is the KL divergence between the 
approximate  and the true posterior )(q )( O,|p . The 
approximation of the true posterior  using )( O,|p )(q  is 
realized by minimizing .))()(( O,||| pqDKL

For computational convenience,  is expressed in a 
factorized form, with the same functional form as the priors 

 and each parameter represented by its own conjugate 
prior. For the iHMM model, we assume 
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Once we learn the hyperparameters of these variational 
distributions from the data, we obtain the approximation of 

 by . The joint distribution of )( O,|p )(q  and 
observations  is given as O
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where priors ,  and  are given in (14), (15) and 
(16) respectively. All parameters 

)(zp )(mp )(p
}{ ,  in these prior 

distributions are assumed to be set.  
We substitute (13) and (17) into (11) to yield 
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The optimization of the lower bound in (18) is realized by taking 
functional derivatives with respect to each of the  distributions 

while fixing the other q  distributions and setting 
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find the distribution  that increases  [15]. The local 
maximum of the lower bound  is achieved by iteratively 
updating the parameters of the variational distributions 

)(q L
)(qL

)(q . We 

terminate the algorithm when the change in  is negligibly 
small.  

)(qL

4. EXPERIMENTAL RESULTS

Performance of the iHMM has been considered for video data 
collected in an outdoor environment using a Canon VB-C50iR 
network camera. The video was collected at 8~10 frames per 
second with 320 x 240 pixel resolution. The data contains 35,000 
images recorded at different moments in time, with each video 
sequence comprising 20 consecutive images. The iHMM was 
trained on the “normal” events; unusual events, in our case are 
defined by the presence of trucks and bike-riders (the area under 
test is typically characterized by walking individuals and cars), are 
detected through the low likelihood resulting from the trained 
iHMM.  

We divide each frame of a video sequence into  spatial 
blocks  and each block corresponds to an 80 x 
60 pixel image area (the use of blocks reduces feature vector 
dimensionality, and the 16 associated iHMMs are linked to specific 
characteristics of the local scene within the block). 

16V
}{ 4,41,21,1 B,...,B,B

We first compared the effectiveness of the ISA against shift-
invariant wavelets [13] and an independent component analysis 
(ICA) [13]. For this evaluation, we considered the features 
associated with one particular block, ; see Fig. 2. The training 
data were 1,000 video sequences of pedestrians. Eight video 
sequences, (Table 1) corresponding to “normal” events were then 
used to test, for each of which the log-likelihood was computed 
using the corresponding iHMM model.  

3,1B

Table 1 shows the average classification results, for typical 
behavior, in the form of the log-likelihood using the three feature-
extraction methods. The ISA features yield more stable log-
likelihoods: small changes (shifts) in the input image cause larger 
variations in the distribution of the likelihood of both ICA features 
and the shift-invariant wavelets. Another advantage of using ISA 
features is that their dimension is much smaller than that of the 
shift-invariant wavelets (40 as opposed to 1,200); a high dimension 
of shift-invariant wavelets causes implementation problems (not 
enough training data). For these reasons, we use the ISA features 
for our detection problem. The results in Table 1 were computed 
using VB, with MCMC yielding comparable results.  

1 2 3 4 5 6 7 8
ICA -28.2 -24.3 -27.5 -18.9 -20.8 -29.2 -31.2 -22.7 
SIW -18.7 -20.2 -18.4 -20.8 -19.5 -19.4 -21.3 -20.7 
ISA -19.4 -19.2 -20.1 -20 -19.7 -19.9 -20.3 -20.1 

Table 1. Comparison of independent component analysis, shift-
invariant wavelets, and invariant subspace (ISA) analysis. 

In the results presented here, the posterior density function of 
both the MCMC and VB solutions indicated that from three to ten 
states were required of the HMM, depending on the complexity of 
the associated video block. We re-emphasize that the iHMM does 
not employ a single HMM but rather a full posterior distribution on 
the model structure. 

We evaluated the iHMM for unusual-event detection in a video 
sequence, using both MCMC and VB implementations. In these 
representative examples we used  video sequences to test 
the iHMM performance. For each block in our testing data, we 
evaluated the log-likelihood of being generated from that 
respective block’s trained iHMM model. For example, 

20n
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classification results for block  for the first video sequence are 
shown in Fig. 1. We use a histogram to graphically display the log-
likelihoods corresponding to both normal and abnormal sequences 
from testing data considered.    

3,2B

Fig. 1. Classification results for block 3,2B

Figure 2 presents snapshots from three example and 
representative sequences that highlight the effectiveness of the 
MCMC-based method. In each example, we display three frames 
and the corresponding log-likelihood plots as explained above; 
only the middle two blocks of each image are presented here. 
Example one contains normal walking behavior, example two an 
abnormal bike-rider, and example three an abnormal truck (from 
top to bottom in Fig. 2). The log-likelihoods corresponding to 
abnormal events are bolded. We also evaluated the effectiveness of 
the VB implementation on the same three sequences. The truck is 
detected as being abnormal via VB, whereas the first two examples 
(normal walking and the bike-rider) are both detected as being 
normal, despite the fact that the latter constitutes abnormal 
behavior. The VB version causes higher likelihoods corresponding 
to normal behavior (getting closer to the abnormal-event 
likelihoods), making abnormal-event detection more difficult.  

In our analysis of a large set of video, the MCMC method works 
better than the VB version because the latter is an approximate 
inference algorithm. However, the computation of MCMC is 
expensive; it requires roughly 10 hours of CPU in non-optimized 
MatlabTM on a Pentium IV PC with a 2.1 GHz CPU to train the 
model, while VB requires less than 15 minutes. For both models, 
the testing is fast (a few seconds in non-optimized MatlabTM).

5. CONCLUSION AND DISCUSSION 

We have considered an algorithm that combines the advantages of 
the iHMM framework with the independent subspace analysis for 
anomaly detection. This framework is well suited for cases in 
which collecting sufficient unusual data is impractical or cannot be 
defined in advance.  

Two inference tools are considered for the iHMM: an MCMC 
solution based on a Gibbs sampler, and a VB approach via 
maximizing a variational lower bound. We compared MCMC and 
VB implementations and showed that VB provides an efficient 
alternative to MCMC (being less expensive to train) but 
demonstrated that VB sometimes incorrectly detects abnormal 
scenarios in testing.  

The proposed algorithm has several limitations that we intend to 
address in future work. First, we will consider developing models 
to utilize the information between adjacent blocks. In addition, 
based on the efficiency of the VB framework and the performance 
of the MCMC algorithm, we will consider combining the two 
methods (MCMC-VB) in future work.     

Fig. 2. Video sequence classification using MCMC inference 
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