SEQUENTIAL, IRREGULAR AND COMPLEX OBJECT CONTOUR TRACING ON FPGA

Kumara Ratnayake and Aishy Amer

Concordia University, Electrical and Computer Engineering,
Montreal, Quebec, Canada
Email: [k_ratnay, amer]@ece.concordia.ca

ABSTRACT

This paper proposes a real-time, robust, scalable and compact Field
Programmable Gate Array (FPGA) based architecture and its im-
plementation of contour tracing of video objects. Achieving real-
time performance on general purpose sequential processors is dif-
ficult due to the heavy computational and memory access demands
in contour tracing, thus a hardware acceleration is inevitable. Our
finding to the existing related work confirms that the proposed ar-
chitecture is much more feasible, cost effective and features impor-
tant algorithmic-specific qualities, including deleting dead contour
branches and removing noisy contours, which are required in many
video processing applications. Our implementation achieved an op-
timum processing clock of 158 MHz while utilizing minimal hard-
ware resources and power. The proposed FPGA design was success-
fully simulated, synthesized and verified for its functionality, accu-
racy and performance on an actual hardware platform which consists
of a frame grabber with a user programmable Xilinx Virtex-4 SX35
FPGA.

Index Terms— Field programmable gate arrays, Object detec-
tion, Image edge analysis, Video signal processing

1. INTRODUCTION

Contour tracing is a method that links connected neighborhood pix-
els in a binary edge frame, which is becoming increasingly important
in many image and video processing applications such as video sur-
veillance [1], object based video coding, e.g., MPEG-4 and MPEG-
7, [2], pattern recognition and computer vision.

Considerable efforts have been given to devise contour tracing
algorithms on software platforms [3, 4, 5]. However, the compu-
tational complexity involved in contour tracing makes it difficult to
achieve real-time performance on general purpose sequential proces-
sors such as CPU or DSP. Hence, hardware accelerations are neces-
sary to attain real-time contour tracing. Emerging FPGAs with em-
bedded multipliers, memory blocks and high pin counts are increas-
ingly employed on hardware platforms in many video processing ap-
plications due to their run-time reconfigurability and lower develop-
ment cost when compared with other architectural approaches such
as full custom Application Specific Integrated Circuits (ASICs).

In this paper, we propose a real-time, scalable and compact FPGA-
based architecture and its implementation of contour tracing, which
is an extension to our previous art on FPGA-based video segmenta-
tion presented in [6]. The rest of the paper is organized as follows:
Section 2 describes the related work and Section 3 gives an overview
of the contour tracing algorithm [3]. Our proposed architecture is

This work was supported, in part, by the Fonds de la recherche sur la
nature et les technologies du Quebec (NATEQ).

1-4244-1437-7/07/$20.00 ©2007 IEEE

V-165

outlined in Section 4. Section 5 contains experimental results while
Section 6 concludes this paper.

2. RELATED WORK REVIEW

Chia et al. [7] proposes a parallel VLSI architecture which consists
of N+1 processing elements for generating the chain codes of object
contours in a binary frame with N raws. The algorithm proposed in
[7] can complete contour extraction in 3V cycles, assuming the input
binary frame is already stored in memory. However, in order to com-
plete tracing in 3N cycles, [7] requires simultaneous reading of all
N raws and simultaneous writing of chain codes to memory. More-
over, final contours are generated by accessing memory in a random
fashion. Contour tracing methods inherently involves random data
movements between memory and contour extraction unit(s). Thus,
performance and feasibility of implementing a given contour trac-
ing architecture or algorithm depend heavily on the efficiency of the
memory and the robustness of the memory data accessing mecha-
nism. Hence, as presented in [7], the architecture is virtually infea-
sible to implement with presently available memories.

A full custom VLSI CMOS design for extracting contours is
presented by Agi et al. in [8]. Here, authors attempt to minimize
the memory usage by partitioning the input frame into smaller re-
gions and distributing these regions to an array of processing el-
ements (PEs). Each PE in [8] consists of its own memory and a
contour tracing unit, and uses a 2x2 window for extracting partially
completed contour lists. However, [8] fails to produce completed
contour tracing, unless a full object can be completely stored in the
relatively small processing memory.

Moreover, the conventional contour tracing algorithms used in
[7] and [8] do not have the intelligent features present in [3] method
and subsequently in our proposed implementation. These charac-
teristics include detection and elimination of dead contour branches
and noisy contours, which are required in many video processing
applications.

3. OVERVIEW OF THE REFERENCE CONTOUR
TRACING ALGORITHM

The gaps free edge image, E(n), produced with spatio-temporal mo-
tion detection followed by morphological edge detection [6, 1] con-
sists of object contours (white points, p,,) and a background (black
points, py). The goal of a contour tracing algorithm is to link the
white points, p.,, into a group. Unlike conventional contour trac-
ing algorithms, [3] extracts contours of all closed complex objects
while deleting dead or inner branches, and excluding contours of
noisy objects. The detection and exclusion of such contours are im-
portant and necessary in video surveillance and other video process-

ICIP 2007

N BRANCHES
SLERY Y Z AX 7/
1 —_

E(n) DELETE
LOCATE FIND
»| startTpoNt [™| NEIGHBORS | ™ DD é

CONDITIONAL
=TT BRANCHING

) SELECT d CLOSEm‘
< contouR ¥ conTouR -—C(n-1)

Fig. 1. Contour Tracing Algorithm [3].

ing applications, hence, we select [3] for our FPGA implementation.
However, inherent sequential nature of [3] brings some challenges
to its implementation on parallel hardware devices such as FPGAs.
In addition, the process of excluding a contour in [3] requires ma-
nipulating previous frame contours. As such, an efficient method of
retrieving appropriate contours of previous frame is needed. We pro-
pose an efficient cache architecture, in the FPGA, to overcome the
sequential issue and a robust mechanism to access previous frame
contours stored in a memory without interfering the core processing
units.

A block diagram of the tracing method [3] is depicted in Fig. 1.
More detailed description of this referenced algorithm can be found
in [3]. As can be seen from Fig. 1, the algorithm can be partitioned
into five sub modules, which are briefly outlined next.

Locating A Start Point (Rule 1): The edge image, E(n), is
scanned in raster mode (from left to right and from top to bottom)
until an unvisited white points, p.,, which has at least one unvisited
neighbor is found. If such a p,, exists, then the set starting point, ps,
= pw, set the current point, p., = ps, and perform Rule 2.

................

SPATIO-TEMPORAL
OBJECT
SEGMENTATION

] T T T TR
ACQUISITION] 5
FRAME — 8‘-» | 2
ot DMA |at—pe] HIGHSPEED | 5|
TRACED FRAME| |~ i | CACHE g '
AND -— Z&+— o
CHAIN CODES : 1 o
_____ : I =} |
o
I y £\
CONFIGURATION | | S
REGISTERS | C&PXF&(}J{R I
Virtex-4 SX35 L ______ J

Fig. 2. System-Level Architecture of Contour Tracing.

Finding the Rightmost Neighbor Points (Rule 2): In [3], trac-
ing is performed in anti-clockwise direction searching for a right-
most neighbor of the current point in an 8-neighborhood, p;. The
current searching direction, ds, is defined by the direction from the
previous point, pp, to the current point. The direction to the right-
most neighbor of a current point which depends on d; is formulated
as:

{ds + 6+ [(ds + 1) mod 2]} mod 8. (1)

Eq. 1 states that the algorithm searches up-to five and six rightmost
neighbors for even and odd value of ds, respectively. If a rightmost
neighbor is present, then p. is labeled visited, p, = pc, pc = pi,
and Rule 4 is executed, otherwise p. is a dead branch and deleted by
performing Rule 3.

Deleting Dead Branches (Rule 3): Rule 3 eliminates current
point p. from E(n), sets p. = pp and pj to its previous neighbor,
and finally activates Rule 2.

Contour Closing (Rule 4): If p. = ps or p. is labeled visited,
the current contour, C,, being traced is closed. In both cases, Rule
4 removes all the points of the C, from E(n) and perform Rule 5.
Furthermore, if p. is labeled visited, remaining dead points of C.
are eliminated from E(n). If C. is not close, then Rule 4 stores
coordinate and the chain code of p. and activates Rule 2.

Contour Selection (Rule 5): In this rule, C. is verified with
three measures before adding C. to the contour list, C'(n). C. is
not added to C'(n) if 1) current contour length, F., is too small,
or 2) P, is small and has no corresponding contour in the previous
contour list, C,—1, or 3) C. resides in an already traced contour, Cp,
causing a low spatial homogeneity of the object of C,.

Although [3] records contours in both the chain code and the
point coordinates, we use chain code in our implementation since
the chain code requires less memory for storage.

4. PROPOSED ARCHITECTURE

Fig. 2 exemplifies our proposed system level architecture of contour
tracing. We have also incorporated our previous work on FPGA-
based object segmentation [6] as a front-end processing engine for
our proposed architecture. The proposed contour tracing architecture
consists of a HIGH-SPEED CACHE and a CONTOUR TRACER.

4.1. Architecture of HIGH-SPEED CACHE

The performance of the any sequential contour tracing architecture
is heavily determined by the efficiency of the memory and its data
transferring mechanism. The algorithm [3] demands reading a 3x3
window randomly from memory. Intuitively, Static-RAM (SRAM)
devices are ideal for random access applications, however, they suf-
fer from few significant requisites. First, SRAM is costly and it in-
creases physical area and power consumption. Second, real-time
precessing requires reading a 3x3 window as fast as possible, ideally
in one clock cycle. SRAM needs 3 clocks (1 clock/1 raw) and ac-
cessing 3 bits in a raw deflates the SRAM bandwidth, as the data bus
of conventional SRAM is significantly greater than 3 bits. Thus, we
propose a scalable, efficient and high speed cache architecture by ex-
ploiting FPGA memory blocks (BRAMs), which is depicted in Fig.
3. Main attributes of our cache are: 1) simultaneous read and write
of 16 pixels in each direction, 2) 4.8 GBits/s aggregate throughput
and 3) scalability with O(n) area complexity.

CT(n) - HIERARCHICAL MEMORY STACKS

STACK 0 ~/[18K x 1bit
RT(n)—w STACK I |~~" [18K x Ibit
E(n) —»| STACK 2 18K x lb@t
STACK 3 | ~~<_[I8K x Ibit

ADDRESBE/CONTROL,
BUS | | ceeeeeee

WINDOW ARRAY

Fig. 3. Scalable Architecture of the HIGH-SPEED CACHE.

V-166

In order to complete contour tracing of one frame, cache is se-
quentially required to 1) store E/(n), 2) read START PIXEL ARRAY
(SPA), 3) generate 3x3 WINDOW, 4) write reconstructed contour
traced frame (RT'(n)) and 5) read contour traced frame (C'T'(n)).
Our proposed cache has four HIERARCHICAL MEMORY STACKS,
HMS, which consists of four BRAMs constructed as dual port with
1 bit wide and 18K deep. We write the first line of F(n) in HMSO0,
the second in HMS1,.., the fifth in HMSO and so on. In the same
sequence, we store four pixels in the four BRAMs of each HMS.
The main motivation for storing in such a sequence is that it facili-
tates reading any 16 pixels in one clock cycle. The CACHE CON-
TROLLER, CACTRL, schedules E(n), CT (n), RT(n), 3x3 WIN-
DOW, and SPA by managing all addressing and read/write controls
to each HMS and controlling the three MUXGs. It can be easily shown
that the total scheduling pipeline is < 67" where 7" = 0.7 ms is the
time requires to access a CIF frame at 150MHz clock.

OO0 SPA 3x3
WINDOW
CACHE ADDR | WINDOW
ADDR GEN "| CTRL

HEADER } A\

FIFO CHAIN
-t » CODER

CTRL

CCH P

CCD
CCA =

CHAIN CORDER

Fig. 4. Overall Schematic of the CONTOUR TRACER.

4.2. CONTOUR TRACER Architecture

As illustrated in Fig. 4, most of the functionality of the proposed
CONTOUR TRACER are controlling various contour tracing events.
ADDR GEN perform rule 1 of [3], and generates direct cache ad-
dresses, DCA, based on the pixels in SPA and controls signal re-
ceived from the two controllers, WINDOW CTRL and CHAIN CODE
CTLR. WINDOW CTRL takes 3x3 WINDOW and determines if the
tracing rules 2-5 are valid by means of a Finite State Machine (FSM)
and some trivial logic employed to evaluate rule 5.

As the the name implies, the CHAIN CODER produces Chain
Code Streams (CCS) of the contours. We write CCS, while they are
being produced, to the DDR memory. A CCS already written to the
memory may not be valid if it is a dead branch or Rule-5 caused it to
remove, therefor, such a CCS should be identified, and be excluded
from the contour list. We adopted headers (CCH) and tails for CCS
as well as for the Chain Code Frame (CCF) starting with 0x8 nibble
as a marker followed by header descriptors. Notice that we inten-
tionally use 4 bits for chain codes which are from 0x0 to 0x7, there-
fore, header marker 0x8 can be easily distinguished. Fig. 5 defines
a complete chain code bit stream. When a CCS belongs to a dead
branch, CHAIN CODER sets a flag in the CCH. On completion, of
contour tracing of a full frame, CHAIN CODER extracts the header
descriptors to remove any CCS of dead branches, and reconstructs
contour traced frames RT'(n) in the cache. RT(n) is transfered to
the DMA along with the chain codes as the final output.

Chain Code Frame (CCF)

[CCF HEADER | CCF] CCF TAIL |
--"’--’ Chain Codes (CC) == ~==u_
[ce, Tcq, | ----- [ce] cC,]

_ — — —CTain Code Segment (CCS)™ o
[[CCSHEADER | CCSPAYLOAD | CCS TAIL |

Fig. 5. Contour Bit Stream Structure.

4.3. Improved DMA Architecture

An efficient management of data transfers within a system is the key
to any real-time hardware implementation. In our implementation,
we designed a scalable and versatile DMA [6] architecture that can
be easily configured by a simple set of registers. Furthermore, the
DMA constitutes the ability to access a memory location with an
address provided by a processing unit, while paying special attention
to minimize the performance overhead caused when a small amount
of data is accessed from the memory.

5. EXPERIMENTAL RESULTS

5.1. Verification

We verify the integrity of the proposed design in conjunction with
[6], by simulating the Hall video sequence, which consists if 300
frames of 352 pixels x 288 lines. The edge frames produced with
the result of contour tracing of FPGA simulation and the reference
C software implementation for the 54th captured frame in the Hall
video sequence is shown in Fig. 6.

OBJECT SEGMENTATION

Fig. 6. Subjective comparison between the FPGA and software im-
plementation results - (a) 54th frame in the captured video sequence.
(b) Spatio-temporal object segmentation result with reference C [3],
and FPGA implementation (c) [6]. (d) Contour tracing results with
C, and proposed FPGA implementation (e).

To verify the result of our proposed FPGA implementation ob-
jectively with the software implementation, we used the Product of
Correctly Classified Proportions [9], PCP, measure which is widely
known and used as an objective measure for evaluating binary im-
ages. Serving software contour-traced frames C'T}., (n) as the ground-
truth data, Fig. 7 (a) shows that the PCP is close to 1 and always
above 0.9 for the 300 frames of Hall video sequence. Notice that
when a binary image is identical to the ground-truth frame, then PCP
is 1. Thus, contour-traced frames produced by FPGA, CT},.,(n), are
very close, if not identical, to the C'Ts,, (n).

V-167

Moreover, we enumerated the sum of the white pixels, Ay, in
the absolutely difference frames, |CTh. (n) — CTsw(n)|. Fig. 7 (b)
exemplifies that Ap,, > 21 for Hall video sequence. Notice that
the object segmentation results [6] already contribute a significant
fraction in this Ay,.,.

’
0.98 v [
o
0.96
()
& 0.94 (a)
0.92
0.9 : ‘ : ‘ :
200 250 300
M me ’

50 100 150
Frame

25 50 75 100 125 150 175 200 225 250 275 300
Frame
Fig. 7. (a) Comparison between software and hardware implemen-

tations with PCP objective measure [9], and (b) difference of total
pixels between software and hardware implementations Ay, .

Furthermore, we have successfully verified the actual function-
ality, accuracy and performance of the proposed FPGA implementa-
tion on a frame grabber using a high-speed camera.

5.2. Synthesis and FPGA Implementation

We have coded and simulated the proposed architecture in VHDL,
synthesized and implemented to a Xilinx Virtex-4 SX35 FPGA. The
implemented architecture occupies 7% of registers, 4% of LUTs
(look up tables), 11% of BRAMs, and 1% of multipliers of the
FPGA. Our proposed-constrained implementation achived a clock
rate of 158 MHz, and consumes 1.2 W for a toggle-rate of 50%.
On the actual hardware platform, we set the processing clock in the
FPGA to 150 MHz, which enabled the FPGA to capture and com-
plete contour tracing at 238 frames/s (in 4.2 ms) for the CIF video
resolution.

5.3. Comparison to the Existing Methods

The hardware architecture presented in [7] is fundamentally infeasi-
ble to implement due to its requirements of random and simultaneous
memory access. Currently available memories do not possess greater
than two read/write ports, but [7] requires a minimum of N (>> 2)
ports to read simultaneously /N raws of a frame. Furthermore, ad-
ditional simultaneous, random and fast accesses to the memory are
required in [7] when each raw produces partially completed chain
codes, and these are read and linked to create the final chain codes.
As a result of this heavy memory access requirement, [7] needs an
enormous amount of pins, which are not currently available even on
the largest FPGA.

[8] fails to trace complete contours of large objects and requires
an external post processor to link partially completed contours. Hav-
ing an external post processor in addition to the core contour tracing
circuitry increases cost, power, and physical area.

The architectural requirements needed in [7, 8] prevail having
realistic hardware acceleration methods for contour tracing. In con-

trast, we exploited heterogeneous resources readily available on FPGA
devices, adopted them in our architecture and devised a real hard-
ware solution. Both [7, 8] need N contour processing units, whereas
our method consists of only one tracing unit. Moreover, [7, 8] lack
key contour tracing features such as deleting dead branches and re-
moving noisy contours, and therefore, [7, 8] are not suitable for
video applications such as video surveillance.

6. CONCLUSION

In this paper, we proposed a robust real-time, scalable and compact
FPGA-based architecture and its implementation of contour tracing
of video objects. Intentional use of heterogeneous resources in FP-
GAs, and advanced design techniques such as heavy pipelining and
data parallelism enabled us to achieve an impressive contour tracing
throughput of 238 frames/s, while consuming minimal power and
resources. We verified our proposed implementation on an actual
Virtex-4 SX35 FPGA platform for its functionality, accuracy and
real-time performance. Existing methods lag behind our solution in
key factors such as feasibility, cost and algorithmic-specific quali-
ties, such as deleting dead contour branches and exclusion of noisy
contours, which are required in many video processing applications.

Future work includes integrating with a noise estimation imple-
mentation in order to adapt automatically to video noise in our pre-
vious work on FPGA-based object segmentation.

7. REFERENCES

[1] A. Amer, “Voting-based simultaneous tracking of multiple
video objects,” in IEEE Trans. Circuits and Systems for Video
Technology, vol. 15, pp. 1448-1462, Nov. 2005.

H. Tsuji, S. Saito, H. Takahashi, and M. Nakajima, “Estimating
object contours from binary edge images,” in Proc. IEEE Int.
Conference on Image Processing (ICIP), vol. 3, pp. 453-456,
Sep. 2005.

A. Amer, “Memory-based spatio-temporal real-time object seg-
mentation,” in Proc. SPIE Int. Symposium on Electronic Imag-
ing, Conf. on Real-Time Imaging (RTI), vol. 5012, pp. 10-21,
Jan 2003.

F. Chang, C.J. Chen, and C.J. Lu, “A linear-time component-
labeling algorithm using contour tracing technique,” Computer
Vision and Image Understanding, vol. 93, pp. 206-220, Feb.
2004.

[5] T. Pavlidis, “Contour filling in raster graphics,” in Proc.
ACM Annual Conference on Computer Graphics and Interac-
tive Techniques, pp. 29-36, Aug. 1980.

K. Ratnayake and A. Amer, “An FPGA-based implementation
of spatio-temporal object segmentation,” in Proc. IEEE Int.
Conference on Image Processing (ICIP), pp. 3265-3268, Oct.
2006.

[7]1 T.L. Chia, K. B. Wang, L..R. Chen, and Z. Chen, “A parallel al-
gorithm for generating chain code of objects in binary images,”
Information Sciences Informatics and Computer Science, vol.
149, no. 4, pp. 219-234, Feb. 2003.

I. Agi, P. J. Hurst, and A. K. Jain, “A VLSI processor for par-
allel contour tracing,” in Proc. IEEE Transactions on Signal
Processing, vol. 40, no. 2, pp. 429-438, Feb. 1992.

[9] P. L. Rosin, “Thresholding for change detection,” Computer
Vision and Image Understanding, vol. 86, pp. 79-95, 2002.

[2

[

3

—

[4

—

(6

—_

[8

—_—

V-168

