
ANALYSIS AND INTEGRATED ARCHITECTURE DESIGN FOR OVERLAP SMOOTH AND
IN-LOOP DEBLOCKING FILTER IN VC-1

Yen-Lin Lee and Truong Nguyen

ECE Dept., UCSD, La Jolla, CA 92093-0407
Email: yel004@ucsd.edu, nguyent@ece.ucsd.edu

http://videoprocessing.ucsd.edu

ABSTRACT

Unlike familiar macroblock-based in-loop deblocking filter in H.264,
the filters of VC-1 perform all horizontal edges (for in-loop deblock-
ing filtering) or vertical edges (for overlap smoothing) first and then
the other directional filtering edges. The entire procedure is very
time-consuming and with high memory access loading for the whole
system. This paper presents a novel method and the efficient in-
tegrated architecture design, which involves an 12×12 overlapped
block that combines overlap smoothing with loop filtering for per-
formance and cost by sharing circuits and resources. This architec-
ture has capability to process HDTV1080p 30fps video and HDTV
2048×1536 24fps video at 180MHz. The same concept is applicable
to other video processing algorithms, especially in deblocking filter
for video post-processing in a frame-based order.

Index Terms— Overlap smoothing, in-loop deblocking filter,
VC-1, SMPTE-421M, VLSI architecture

1. INTRODUCTION

VC-1 [1] is a video codec specification that has been standardized
by the Society of Motion Picture and Television Engineers (SMPTE)
and adopted in next-generation optical media formats like HD-DVD
and Blu-ray. Comparing to H.264/AVC [2], the design approach of
VC-1 lowers computational complexity without significant perfor-
mance loss since H.264/AVC uses many complex techniques for bet-
ter visual quality. Lower complexity leads to practical architecture,
lower cost, and smaller power consumption and heat dissipation. Al-
though VC-1 operates at lower complexity, it still approaches a com-
pression ratio similar to H.264/AVC [3]. Fig. 1 shows the encoding
loop of a VC-1 codec.

Deblocking filter is an important part of the advanced codec be-
cause it improves visual quality of decoded frames. Hence, VC-1
operates an in-loop filtering prior to a current decoded frame as the
future reference picture. Besides this loop filter, VC-1 also uses an-
other filter, overlap smooth, for smoothing real blocking artifacts
[4]. However, the procedures of these two filters are both arranged
by frame-based orders, which means that all horizontal edges (for
loop filtering) or vertical edges (for overlap smoothing) should be
performed first and followed by the other directional filtering edges.
Although there are many well-designed methods and architectures
that specifically deal with loop filtering in a macroblock-based order
[5][6], none of them is appropriate for VC-1 frame-based filtering.
The reason is that these methods fail to filter all edges within the
current macroblock due to the problem of data dependency. In other
words, some filtering edges should not be performed prior to par-
ticular edges on boundary between the current macroblock and the

Fig. 1. Encoding loop of VC-1 codec.

neighboring unreconstructed macroblocks. If these previous meth-
ods directly apply to VC-1 deblocking filter, they could cause many
unnecessary processing cycles and inefficient memory access.

In this paper, we propose a method to solve the data dependency
problem and accelerate the processing time. Our method defines
a 12×12 overlapped block and processes both overlap smoothing
and loop filtering within it. This method is a key technique that
helps us perform VC-1 deblocking filter in a block-based order but
not a frame-based order so as to pipeline with block reconstructing.
Besides, it also combines two VC-1 filters in order to improve the
performance and reduce the cost by sharing circuits and resources.

The rest of this paper is organized as follows. In Section 2, two
VC-1 filters are described. In Section 3, we proposed processing
techniques and integrated architecture. Implementation results and
performance are in Section 4. Finally, conclusions will be given in
Section 5.

2. DEBLOCKING FILTERS IN VC-1

2.1. Overlap Smooth

An overlap smoothing operation should conditionally be performed
across the edge of two neighboring intra blocks, for both the luma
and chroma data. This lapped transform performs a pre-processing
step in spatial domain during the encoding procedure and a post-
processing step following inverse transform during the decoding pro-
cedure [4]. With a well designed overlapped transform, blocking ar-
tifacts can be minimized, and decoded frames can retain most orig-
inal information. Moreover, computational complexity of overlap
smoothing is lower than normal loop filters and could be applied to
simple applications without loop filter.

A portion of a P frame including three 8×8 intra blocks and one
8×8 inter block is shown in Fig. 2. An overlap smoothing oper-
ation is applied on four pixels, i.e., two pixels on each side of the
block boundary. It performs on vertical edges first and then hori-

V - 1691-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

Fig. 2. Example showing overlap smoothing

Fig. 3. 8 Pixels involving in loop filtering operation

zontal edges in a specific order within a frame or slice. If the pixels
are filtered for both vertical and horizontal edges, such as the pix-
els in the 2×2 corner marked with the dark circle, vertical filtering
operation must be performed first and followed by horizontal filter-
ing operation. Overlap smoothing will carried out on unclamped 10
bit reconstructed pixels. Subsequent to filtering, the constant value
of 128 will be added to each pixel of the block, which will then be
clamped to the 8-bit range to produce the reconstructed output.

2.2. In-loop Deblock Filter

An in-loop deblock filtering operation is done prior to using the re-
constructed frame as a reference for motion predictive coding. In
order to lower computational complexity, the filtered edges in VC-1
standard are divided into 4-pixel segments. In each 4-pixel segment,
the third pair will be filtered first, and the result of this filtering op-
eration determines whether the other three pixel pairs in the segment
are also filtered. As Fig. 3 shows, the filtering process takes a dis-
continuity measurement involving pixels P1 through P8 that seeks
to detect whether the discontinuity is above a certain threshold. If
a discontinuity is found, then a loop filtering operation is done on
pixels P4 and P5 for smoothing the discontinuity.

The procedure of loop filtering, which performs horizontal edges
prior to vertical edges, is also different from overlap smoothing,
which performs vertical edges prior to horizontal edges. When there
are more than one slice in a picture, the filtering for each slice should
be performed independently. For I and B pictures, loop filter has to
detect and perform on all 8×8 block boundaries. First, all blocks or
subblocks that have a horizontal boundary along the 8th, 16th, 24th,
etc horizontal lines would be filtered. Next, all blocks or subblocks
that have a vertical boundary along the 8th, 16th, 24th, etc columns
would be filtered. For P pictures, blocks could be intra or inter-
coded. Inter-coded blocks adopt 8×8, 8×4, 4×8, or 4×4 size for
inverse transform, and the boundary between these transform blocks
or subblocks should be filtered. First, all blocks or subblocks that
have a horizontal boundary along the 8th, 16th, 24th, etc horizontal
lines should be filtered. Next, all subblocks that have a horizontal

Fig. 4. All filtered edges relative to the luma data of a macrolbock.

(a) (b)

Fig. 5. Modified processing order. (a) An overlap smooth processing
order. (b) A loop filter processing order.

boundary along the 4th, 12th, 20th, etc horizontal lines should be
filtered. Next, all blocks or subblocks that have a vertical boundary
along the 8th, 16th, 24th, etc columns should be filtered. Lastly,
all blocks or subblocks that have a vertical boundary along the 4th,
12th, 20th, etc columns should be filtered. Fig. 4 shows an example
for all filtered edges relative to the luma data of a macroblock. For
I or B-frame, the loop filtering procedure should be H0, H1, H2,
V 0, V 1, and V 2. For P-frame, the loop filtering procedure should
be H0, H1, H2, h0, h1, V 0, V 1, V 2, v0, and v1. Comparatively,
the overlap smoothing procedure should be V 0, V 1, V 2, H0, H1,
and H2. These two filters have different processing order.

3. PROPOSED METHODS AND ARCHITECTURE

3.1. Modified Processing Order

In order to shorten processing time and reduce unnecessary memory
access cycles, an architecture that cooperates with block reconstruc-
tion is proposed. In our method, this block-based procedure adopts
a 12×12 overlapped block as our basic filtered block size includ-
ing a filtered area and an overlapped area. The pixels in the filtered
area will fully be filtered and will be written back to external buffer
for displaying or post-processing. The pixels in the overlapped area
would be partially filtered in the current overlapped block and will
be filtered by other future overlapped blocks again. This proposed
overlapped block is useful and employed as a common processing
field for both overlap smoothing and loop filtering.

Two modified processing orders for overlap smoothing and loop
filtering are shown in Fig. 5. We design these orders in a block size
for processing in block-based order but not original frame-based or-
der. Fig. 5(a) shows an overlap smooth processing order applied to
an overlapped block. Any edge with a predefined index in this fig-
ure could be a filtered edge during processing, and the filtered edge
with a smaller index should be processed prior to that with a larger
index. However, not every predefined edge should be filtered during
the procedure of most overlapped blocks. When these edges are fil-
tered by a previous overlapped block, they cannot be filtered again.
When pixels of the block complete all filtering operations and will
not be used for succeeding overlap smoothing, the constant value of
128 should be added to each pixel and then be clamped to the 8-bit
range for producing the reconstructed output before loop filtering.
Fig. 5(b) shows a loop filter processing order applied to an over-

V - 170

Fig. 6. Processing flow of an overlapped block.

(a) (b)

Fig. 7. (a) A moving filtered macroblock. (b) Four separated over-
lapped blocks from the filtered macroblock.

lapped block. Similarly, a filtered edge with a smaller index should
be performed earlier than that with a larger index, and the edge fil-
tered by previous block should not be filtered again. Actually, only
the first overlapped block of a frame or slice would be processed
on all predefined overlap smoothing or loop filtering edges. By per-
forming filtering operations in our modified processing order within
an overlapped block, it can integrate these two VC-1 filters in hard-
ware. The advantage is that the second modified processing order
for loop filtering can follow the first processing order without any
memory access. Fig. 6 shows a processing flow of an overlapped
block.

3.2. Pipeline Processing by Moving Macroblock Position

One important reason that the proposed method attempts to modify
original processing order to a block-based procedure is to pipeline
the filtering step with the reconstruction step. Nevertheless, it still
fails to filter all edges within the current macroblock because some
filtering edges should not be performed prior to particular edges on
boundary between the current macroblock and neighboring unrecon-
structed macroblock. For example, vertical edges should be filtered
prior to horizontal edges when the related pixels belong to both di-
rectional overlap smoothing edges. A method that shifts the filtered
macroblock position is proposed here. In particular, the position of a
filtered macroblock is shifted left 8 pixels in x-axis and up 8 pixels in
y-axis on a frame or slice from the position of a current reconstructed
macroblock. When the position of a current macroblock is located
on (m , n), the position of this filtered macroblock will be located on
(m-8 , n-8) shown in Fig. 7(a). If there are pixels of the filtered mac-
roblock that protrude the border of the current frame or slice, these
pixels of the filtered macroblock do not exist and no operation will
be performed on them. Based on this shifting filtered macroblock,
we separate a filtered macroblock into four basic overlapped blocks
shown in Fig. 7(b), which could be performed by our proposed mod-
ified processing orders for both overlap smoothing and loop filtering.
Fig. 8 shows the pipeline schedule during the period of performing
a reconstructed macroblock and a filtering macroblock.

In the proposed method, we need the temporal data buffer to
store partially filtered or unfiltered pixels. There are two kinds of
buffer: the temporal data buffer implemented by on-chip SRAM that
stores short-time pixels for the current macroblock and the next mac-
roblock; the temporal data buffer allocated in the external memory
that stores long-time pixels for the next macroblock row. This exter-

Fig. 8. Pipeline time schedule of a reconstructed macroblock and a
filtering macroblock.

Fig. 9. Data processing for a reconstructed macroblock and a filtered
macroblock.

nal memory buffer size would be the width of the picture multiplied
by the data size of 8 pixels and then multiplied by 2 (for both luma
and chroma data). Data processing of performing a reconstructed
macroblock and a filtering macroblock for luma data is shown in
Fig. 9. The data of top three 8×8 blocks in Fig. 9 are temporal
neighboring read data, which are partially filtered by previous fil-
tered macroblocks. The data of bottom three 8×8 blocks in Fig. 9
would be temporal neighboring write data, which will partially be
filtered by current macroblock and written back into the temporal
data buffers. The data of top-left four 8×8 blocks in Fig. 9 will be
filtered pixels and will be written into a decoded picture buffer of the
external memory as the future reference data or for displaying. The
data of bottom-right four 8×8 blocks in Fig. 9 are the reconstructed
pixels. The procedure for chroma data is similar to that for luma
data.

3.3. Integrated Architecture Design

Block diagram of the proposed architecture is shown in Fig. 10.
It performs both overlap smoothing and loop filtering based on an
overlapped block mentioned above. Temporal Data Buffer (on-chip)
stores unfiltered reconstructed data from Motion Compensation, un-
filtered or partially filtered temporal neighboring data from the ex-
ternal memory or our proposed integrated filter. External Memory
Controller manages the read/write cycles from/to the external mem-
ory. Both Motion Compensation and the proposed integrated archi-
tecture connect with System Controller that controls overall system
and has a HW/SW system interface, such as Memory-mapped I/O
(MMIO). Filter Control Unit is the central administration including
two major finite state machines: one controls the flow among dif-
ferent overlapped blocks within a filtering macroblock; the other is
in charge of the schedule among different filtering edges within an
overlapped block. The parameters previously stored in the exter-
nal memory should be read back into Filtering Parameter Registers

V - 171

Fig. 10. Block diagram of the proposed integrated architecture.

Table 1. Hardware cost of the proposed VC-1 filter architecture

Functional Block Gate Counts

Overlap Smooth and Clamp 4802
In-loop Deblocking Filter 4076
Filtering Control Unit and Others 8346
Overlap Block Memory Structure 15333

Total 32557

before filtering operation. Overlapped Block Memory Structure is
also a local buffer that stores all pixels within an overlapped block.
Overlap Smoothing Filter and Clamp and In-loop Deblocking Filter
access input data from Overlapped Block Memory Structure and per-
form the filtering operation respectively according to the proposed
modified processing order. During the procedure, we pipeline all fil-
tering operations so as to reduce the processing time. For a target
to access pixels in a shortest time, we use an efficient structure that
remaps and rotates the order of filtering pixels to implement Over-
lapped Block Memory Structure.

4. EXPERIMENTAL RESULT

Our integrated architecture is designed using VHDL and implemented
by TSMC 0.18-μm technology on Artisan cell library. The imple-
mented architecture operates with our VHDL- and C-model, and
the result has been verified with the reference VC-1 decoder soft-
ware. Table 1 shows logic gate count including several functional
blocks and a synthesized memory buffer in the proposed VC-1 filter
synthesized at 180MHz. For the sake of evaluating performance of
the proposed architecture, we create several worst-case test patterns
for I, B or P-frames in two highest resolutions of VC-1, 1080p and
2048×1536. When performing these patterns, the filter will process
on every boundary of all 8×8 blocks or 4×4 blocks for two kinds
of filters. Table 2 demonstrates the processing cycles and process-
ing time for different cases, and the result meets the requirement for
HDTV1080p 30fps video and HDTV 2048×1536 24fps video. Ta-
ble 3 shows the analysis of external memory bandwidth and SRAM
requirement for a worst-case 1080p in two different implemented ar-
chitectures: the first one only implements VC-1 in-loop deblocking
filter; the other implements an integrated architecture for both two
filters. Compared with software, the former proposed architecture
reduces 61.31% of external memory cycles, and the later reduces
68.3% of external memory cycles. Because the input to the overlap
smoothing process should be the inverse transformed spatial block of

Table 2. Processing time of the proposed VC-1 filter architecture

Frame Type (Worst Case) Cycles Time

1080p, 30fps I, B-frame 3829977 21.06 ms

1080p, 30fps P-frame 4771316 26.24 ms

2048×1536, 24fps I, B-frame 5767373 31.72 ms

2048×1536, 24fps P-frame 7184794 39.52 ms

Table 3. Memory Bandwidth and SRAM Requirement (1080p)

Software Proposed SRAM Requirement

DB 18.74 MB/f 7.25 MB/f 1.088KB

OS+DB 35.87 MB/f 11.37 MB/f 2.176KB

pixels whose dynamic range is 10 bits, we use data width of 16-bits
to store temporal data in the external memory and on-chip SRAM.
That is why the proposed architecture with both filters requires more
external memory cycles and larger SRAM size. In addition, the ex-
ternal memory bandwidth of software includes written reconstructed
data.

5. CONCLUSION

This paper presents a novel processing method and an efficient in-
tegrated architecture for VC-1 filters based on an overlapped block.
The proposed method uses overlapped block of size 12×12 in this
paper, but the same concept can be extended to other block sizes as
well. For performance and cost, the proposed architecture integrates
overlap smooth with loop filter and pipelines the procedure with
block reconstructing even though the filtering procedure is frame-
based described in VC-1 standard. The architecture is implemented
in VHDL and synthesized by TSMC 0.18-μm technology on Ar-
tisan cell library. It has capability to process HDTV1080p 30fps
video and HDTV 2048×1536 24fps video at 180MHz. Moreover,
the proposed method is also applicable to other video processing al-
gorithms, especially in deblocking filter for video post-processing or
other in-loop filters in a frame-based order.

6. REFERENCES

[1] VC-1 Compressed Video Bitstream Format and Decoding Pro-
cess (SMPTE 421M-2006), SMPTE Standard, 2006.

[2] Advanced Video Coding for Generic Audiovisual Services, ITU-
T Rec. H.264/ISO/IEC 14496-10, Mar. 2005.

[3] S. Srinivasan, S. L. Regunathan, ”An overview of VC-1,” Vi-
sual Communications and Image Processing, Proc. of SPIE, Vol.
5950, pp.720-728, 2005.

[4] T. D. Tran, J. Liang, and C. Tu, ”Lapped transform via time-
domain pre- and post-filtering”, IEEE Trans on Signal Process-
ing, vol.51, no.6, pp.1557-1571, June 2003.

[5] C. C. Cheng, T. S. Chang, and K. B. Lee, ”An in-place archi-
tecture for the deblocking filter in H.264/AVC,” IEEE Trans. on
Circuits and Systems - PartII: Express Briefs, Vol.53, No.7, July
2006.

[6] T. C. Chen, S. Y. Chien, Y. W. Huang, C. H. Tsai, C. Y.
Chen, and L. G. Chen, ”Analysis and architecture design of an
HDTV720p 30 frames/s H.264/AVC Encoder,” IEEE Trans. on
Circuits and Systems for Video Technology, Vol.16, No.6, June
2006.

V - 172

