ADAPTIVE MULTIRESOLUTION FOR LOW POWER CMOS IMAGE SENSOR
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ABSTRACT

To be implemented on an analog CMOS image sensor, a
robust algorithm based on recursive operations is presented.
It allows sensor’s acuity adaptation to the scene activity.
The main interest of the presented motion detection with
adaptive thresholding is that, in a context of embedded
steady camera, such a system allows focusing on targets
with high resolution while keeping background in low
resolution. Drastic power consumption reduction is achieved
by tremendously reducing the amount of processed data.
Index terms— Motion detection, adaptive thresholding,
tracking, multiresolution, CMOS image sensor.

1. INTRODUCTION

Visual tasks for embedded systems are confronted at the
same time with high performance requirements and hard
power consumption constraints. One way to address this
issue is to design specific image processing architectures
allowing some low level local analog processing to be
performed at sensor's level (before A/D conversion), and
thus be particularly power efficient. Thanks to submicron
CMOS processes, the in-sensor processing can be
performed without significantly impairing the device's
resolution and sensitivity. However, specific adapted
algorithms have to be developed concurrently. Since such
sensors have to be fully autonomous, these algorithms have
to be both robust and compliant to various environments
while being at the same time computationally and power
efficient.

In the case of embedded video surveillance, the physical
implementation of motion detection is a particularly
interesting task to investigate, since it allows extracting
relevant information from a scene prior broadcasting. In
addition, in some special applications where autonomy is an
important concern, it could also be used to adapt sensor’s
performance and power consumption.

Tracking moving objects within the scene is also very
interesting since it enables identifying the areas of interest in
the image. If subsequent image processing is necessary on
the detected objects, it will only be performed on the
relevant parts of the image and not on the whole pixels. This
will simultaneously save computation time and power
because of a reduced set of pixels to be processed.

Among existing studies on motion detection and tracking,
some particularly efficient methods have been proposed.
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Implementation of optical flow measurement is an
interesting well-known technique, which has been explored
in [1] and [2] for CMOS image sensors (CIS).

Image segmentation with difference to background and
adaptive threshold has also been studied. In [3], motion
detection is performed from recursive average computations
and has been improved in [4] with a compensation of the
trailing effect.

In [5], an efficient algorithm based on X-A modulation for
artificial retinas is presented. For each pixel, background
estimation and variance are computed with non-linear
operations to perform adaptive local thresholding.

All the precedent approaches focus on optimizing motion
detection but are not concerned with very low power image
processing. Further power saving may be achieved by
combining multiresolution with motion detection algorithm.
Our approach, consisting in “waking up” the system when
an event occurs in the scene, has also been explored in [6].
Low resolution is there achieved using decimated pixels. In
[7], we have compared different low-resolution techniques
for motion detection. The most efficient solution has been
found to be computing spatial average of square areas.

In this paper we first briefly present our considered
programmable analog architecture and the multi-resolution
principle we proposed to save power. We then describe the
proposed algorithms for motion detection, modified to
include adaptive thresholding, and tracking. We then present
results and compare them to a reference algorithm. Finally,
an evaluation of the achieved power consumption is given.

2. SYSTEM ARCHITECTURE
2.1. Power consumption reduction and processing strategy

Systematic A/D conversion of all the matrix pixels, without
taking into account relevant motion information, induces
huge waste of power since many pixels are processed
uselessly. Reducing both spatial and temporal resolution and
thus the amount of data processed may also enhance power
saving. Hence, combining specific motion detection
algorithms with images of low resolution allows only A/D
converting in high-resolution areas of interest, i.e. where
some motion occurs, while static areas remain in low
resolution. Spatial and temporal redundancy is so taken into
account in A/D conversion. This leads to a particularly
power-efficient video surveillance system.
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Low power mode is achieved by reducing image resolution
using macropixels. The macropixels are square blocks whose
gray level is the spatial average of their constituting pixels.
In low power mode, all pixels remain active but only to
compute the macropixels value. This computation is
performed at very low extra power consumption by sharing
pixels sensor capacitance charges. Only the spatial average
of macropixels is then taken into account to detect motion,
with an improvement of results of 85% with respect to the
decimated pixels solution [6].

In [7], we also analyzed the wake up function, i.e. switching
from low resolution to high resolution when a sufficient
variation of a macropixel gray level, indicating motion, is
detected. If no motion is detected within a macropixel, its
constitutive pixels values are neither converted nor sent out
of the imager. Otherwise, the macropixel switches to high
resolution together with a 5x5 macropixels neighborhood.
All constitutive pixels of this ROI are then A/D converted
and read out from the imager. Detecting macropixels
variations is then equivalent to motion detection.

We are now considering the reverse transition when no
motion is observed within a Region of Interest (ROI): a
block of pixels (i.e. a macropixel) turns back to low power
mode only if no motion is observed in the whole 5x5
neighborhood. This function implies to keep low resolution
information in high resolution area in order to check
averages variations. Computation is so performed on
macropixels either in “standby” or “awake” mode (figure 1).
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Figure 1. Sensor’s behavior (ROI: Region Of Interest)
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Such a system allows both switching from active to low
power mode but also having high resolution on a target
before this one enters in a macropixel. A low power high-
resolution tracking is so performed. Figure 2 shows the
improvement obtained with our new method.

Figure 2. Improvement of target detection : a) image in full resolution; b)
former results for multi resolution motion detection [7]; ¢) reduced target
distortion obtained with new method

To face different situations found in video monitoring, an
implementation on a versatile architecture is proposed.

2.2 Physical implemention and operators

In order to perform low power motion detection from pixels
spatial average in a CIS, the implemented system should
offer high compactness and low power consumption.

The considered programmable computational unit (figure 3)
is a low power SIMD machine based on analog processing
[8]. It is composed of an AXB photosensors array to which
an array of Ax(m B) analog memory points (Analog RAM)
is associated, where m is the number of memory elements
per pixel. Typically, m=3, A and B may be up to 1024. The
so-formed matrix is bordered on one side by a vector of A
switched capacitors analog processors. A column of
multiplexers selects the column of pixels or memories to be
used by the processor. A sequencer, implemented by a

digital TP CPU, delivers the successive processors’
instructions.
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Figure 3. Sensor architecture

With such an architecture, pixel averaging can efficiently be
performed by mixing capacitors charges at pixel level [9]. A
digital  implementation = would require = numerous
computations and power consuming transfers of data.

The chosen architecture  globally enables the
implementation of “simple” algorithms at a much reduced
power cost. “Simple” is to be understood as stepwise linear
algorithms based on a reduced temporal or spatial kernel.

3.MOTION DETECTION ALGORITHM

3.1. Algorithm requirement

In our surveillance scheme, we aimed at performing motion
detection with autonomous remote CIS sensors, in unknown
environments. In such a configuration, algorithms must
meet hard constraints of robustness and adaptability.
Markovian algorithms are generally used to face these
situations. However, they had to be simplified in order to
satisfy the considered consumption and computational
constraints while preserving their robustness.

As a reference algorithm, we consider the one presented in
[5] which features non-intensive computation operations
and high robustness. This Z-A algorithm follows the Markov
model used for real time implementations in [10]. The main
improvements presented are a more robust detection with
background estimation than with frame difference and local
thresholding with no global computation.

Improvement of such an algorithm robustness is however
required in our power saving strategy. Less false positives in
motion detection induces keeping irrelevant static area in
low resolution, implying thus lower power consumption.
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3.2 Description of proposed algorithm

In order to be robust and adaptable to scene perturbations,
our proposed algorithm is based on the computation of two
recursive averages (RA/ (1) and RA2 (2)), each with its own
time constant (fixed by the constants N and M): the slowest
is used to bring out the background while the other, with
short lag, filters the signal’s fast perturbations. For each
pixel, the main computation steps are described below:

RAl, =S, and R42 =S,

RAL =RAIL_ ~2-Ral_ +135, D
N N

RA2 =RA2,_ —LRaz_+Ls, )
M M

if A, =|RAI —RA2|> k.5, — motion 3)

where n represents the frame index, S, the current gray level
value for the considered block and .9, a local threshold.

These recursive operations with few memory requirements
make this algorithm easy to implement on our architecture.
The time constant for fast recursive average (R4I) can be
determined in order to allow an efficient fast perturbations
filtering while not inducing significant trail effect.
Considering the z-transform of the recursive average, the
time constant is given by expression (4).

- “)
RAI(z) _ z z with 7= Te

A

Motion is considered in (3) when 4, becomes larger than a
local threshold £.9,, which depends on 4, temporal activity.
The adaptive threshold is obtained by amplifying J, that is
the recursive average of 4, (5). With this method, k.0,
directly depends on 4, perturbations levels, periodicity or
persistence. Then, the corresponding and some neighboring
blocks are switched to high resolution. 4, acts as a pass-band
filter selecting only moving objects of interest in the scene.

0,=0

n n—1

L5+ 1la, 5)
P P

The time constant of this threshold must be quite slow in
order to adapt sensitivity to persistent perturbation only.

In this algorithm, the four constants (k, M, N, P) depend on
the to-be detected objects properties (mainly size and speed).
However, knowing the type of object to detect, local
adaptive threshold is assumed by our algorithm. For

example, for the tested sequences (see paragraph 4.1), we
chose: N=2% M=2* P=2°; k=1.8.

In order to further reduce false positive detections induced
by noisy elements of the scene, an activation function is
used. Based on an a priori scenario, in addition to the
algorithm steps, this function favors local translations. A
macropixel is so allowed to switch to high resolution

(activation) only if the local motion detection has been
preceded by previous motion detection or activation in
nearby macropixels in a given direction (figure 4).

SE translation
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Figure 4. Local translation favouring. Motion is successively detected in
macropixels 1 and 2. Only macropixel 3 can then switch to high resolution.

4. RESULTS

4.1 Algorithm performance

Simulations have been performed on MATLABO for the
considered algorithm with a macropixel-based low-
resolution configuration. Different sequences representing a
wide variety of indoor and outdoor conditions have been
tested with different macropixels sizes: Hall Monitor
(44x24 from 352x240, figure 2), dtneu_schnee (64x48 from
768x576, falling snow) and kwbB (i21www.ira.uka.de)
(74x56 from 740%x560), Walk (40x40 from 640x480,
rustling foliage) (IEF’s sequence), Pets 2002 (64x24 from
640x240 flickering light) (respectively a, b, c, d in figure 5).
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Figure 5. .Sequences with full and low resolution

During the simulation, the state of each macropixel (high or
low resolution) is compared to ground truth information for
each frame. The number of true and false positives and
negatives (TP, TN, FP, FN) can thus be counted.

We used the following motion detection performance
metrics based on [11]: Detection Rate (DR=TP/(TP+FN));
False Alarm Rate (FAR=FP/(TP+FP)); and False Positive
Rate (FPR=FP/(FP+TN)). A specific parameter (for power
saving evaluation), Standby Rate (SB=(TN-+FN)/number of
macropixels) which gives the percentage of the image
staying in low resolution, has been introduced. Table 1 and
2 show measured results for different gray level sequences,
respectively for X-A algorithm [5] and for our new
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algorithm. For each sequence, the data reduction percentage
obtained with the chosen low resolution is indicated. Thus,
for example, in the case of the 64x24 macropixels low
resolution applied on the original 640x240 full resolution
Pets2002 sequence, (64x24) data are processed. A data
amount reduction of 99% is so achieved, impacting a power
reduction of similar ratio.

TABLE 1 - PERFORMANCE METRICS WITHOUT ACTIVATION FUNCTION (NF)
AND WIITH ACTIVATION FUNCTION (F) WITH Z-A ALGORITHM (N=3)

Performance metrics (%)

Grey level sequence

Ty DR FAR FPR SB
(data reduction %) NF 7T NE 7 T NF 7T NE 7
Pets 2002 (99) 96.4 |1 94.8 | 57.0 | 32.0 | 15.7 | 5.0 | 76.2 | 86.5
Hall (98.75) 943 1920 | 83 | 58 | 14 | 0.8 | 86.6 | 88.3
kwbB (99) 99.1 1983|103 | 82 | 1.0 | 0.7 [91.6 | 92.4
dtneu_schnee (99.3) [99.8 | 99.7 | 70.2 | 60.8 | 44.0 | 28.5 | 47.7 | 60.9
Walk (99.5) 100 | 99.8 | 87.3 | 76.9 | 34.8 | 15.0 | 57.8 | 75.5

TABLE 2 - PERFORMANCE METRICS WITH OUR NEW ALGORITHM

Performance metrics (%)

Grey level sequence

(data reduction %) DR FAR FPR SB

NF | F | NF| F | NF| F | NF | F

Pets 2002 (99) 946 1927 | 159 1165 | 2.1 | 1.9 | 884 | 89.7
Hall (98.75) 96.9 | 96.6 [ 129 | 124 | 26 | 2.4 | 834 | 84.0
kwbB (99) 99.0 198.0 2541232 28 | 22 [90.1 | 91.2
dtneu_schnee (99.3) |99.5198.6 1239 |226| 53 | 46 |81.5|83.1
Walk (99.5) 98.7 1945|644 |20.1 | 68 | 0.7 | 833 |89.4

These results show an equivalent DR for all sequences.
Therefore, better results are obtained with our algorithm
concerning FPR and FAR for the 3 sequences having the
biggest perturbations (Pets2002, Walk and dtneu_schnee). A
similar efficiency is obtained for the Hall sequence whereas
kwbB results are in favor of X-A algorithm. Actually, in
kwbB, some camera oscillations come to create non relevant
motion. Since more trailing effect is induced by our
algorithm, more false positives are then generated.

The activation function, by finding local translations and
filtering irrelevant motion, shows FAR improvement results.
SB metric globally shows larger areas staying in standby
mode in our algorithm, for the same DR than X-A algorithm.
Since low resolution implies less power consumption, a
better power saving can be expected with our algorithm than
with Z-A algorithm, without affecting detection efficiency.

4.2 Power consumption

In order to check our power saving concept, we compared
the estimated power consumption induced by our motion
detection scheme implemented on the presented analog
architecture and its digital counterpart.

With a 32x24 macropixels resolution applied on a full
320x240 resolution scene and the analog architecture
working at 40kHz, the total estimated power dissipation
would be of 301uW (at 25fps) [12] as long as the system
remains in power saving mode.

For the power performance evaluation of digital
implementation, we chose a PowerPC G4 (7447) associated

to a common image sensor acquiring full resolution images.
The presented algorithm has been split into two parts. The
first part, which concerns the macropixel generation from
full resolution images, requires about 1 cycle per pixel to
compute 8x8 pixels macroblocks. The second part, which
concerns double recursive average filtering of macropixels
values, requires 20 cycles per pixel with scalar operations
and only two with SIMD Altivec instructions. Two images
sizes have been considered: 256x256 and 348x240. For such
sizes, the PowerPC is respectively x610 and x434 faster
than real time (40ms for 25fps). That means we can
“downclock” the processor frequency to nearly 2 MHz. In
that case, the estimation of the power consumption of
PowerPC is about 200mW to which the power consumption
of about 10mW of the 320x240 sensor must be added.

5. CONCLUSION

We have presented an algorithm allowing low power motion
detection on low resolution images using an already
developed programmable architecture for CIS. An
improvement of robustness compared to reference low level
motion detection algorithm has been exposed, thus leading
to lower power consumption considering our motion
detection scheme. High resolution is applied on moving
objects while keeping static parts in low resolution. A low
power “pseudo-tracking” is so performed from only 1% of
data with respect to full resolution. A power saving gain
about 100 can so be expected. Future work will validate our
approach, taking into account the impact of technological
parameters on algorithm performances.
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