
SOFTWARE PIPELINES DESIGN FOR VARIABLE BLOCK-SIZE MOTION ESTIMATION
WITH LARGE SEARCH RANGE

Zhigang Yang1, Wen Gao1,2, Yan Liu1, and Debin Zhao1

1Department of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China

2Institute of Computing Technology, Chinese Academy of Science, Beijing 100080, China
{zgyang, wgao, liuyan, dbzhao}@jdl.ac.cn

ABSTRACT

This paper presents some techniques for efficient motion
estimation (ME) implementation on fixed-point digital signal
processor (DSP) for high resolution video coding. First, challenges
in large search-range ME are discussed. Then, based on the
statistics analysis of the best matched block, correlations in
variable block-size ME are removed on algorithm level while
keeping almost the same performance as the original fast search
strategy. Based on this modification and data reuse technique, this
paper proposes an “index search” method for DSP implementation,
which is a good solution to balance both high coding efficiency
and high coding speed on the DSP platform. In “index search”, ME
is divided into three steps and highly parallel pipelines are
designed for each step. The fully use of pipelines brings about 85%
time reduction during ME. “Index search” can also be easily
extended to achieve different search range and search patterns.

Index Terms— Pipelines, digital signal processors, motion
estimation, video coding

1. INTRODUCTION

Motion estimation (ME) is a key to block-based hybrid video
coding for reducing the high temporal redundancy between
successive frames. Most of the video coding efficiency is derived
from ME, while it also contributes the heaviest computational
burden for the encoder. Especially in high resolution video coding,
large search range (SR) and variable block size (VBS) adopted to
achieve high coding efficiency, become the most serious
bottlenecks in real-time applications. Thus, fast ME has always
been an important and attractive topic in video compression.

Generally speaking, there are two main research interests for
ME: one is fast search strategy in software and the other is
efficient hardware implementation. Fast search strategy in software
is focus on reducing computation through different search steps
and search patterns, e.g. 3SS [1], diamond search (DS) [2],
UMHexagonS search [3] etc. Further more, the early termination
technique [4] which can speed up search process was accepted by
the latest standards such as H.264 [5] and AVS [6]. For hardware
implementation, the architecture is paid more attention on, e.g. by
means of application specified integrated circuits (ASIC) or field
programmable gate arrays (FPGA). Since the hardware design can
be highly optimized, fast full search (FFS) [7] is usually adopted.

As for digital signal processor (DSP) applications in video
coding, it is a combination of software and hardware. In the aspect

* Supported by the National Natural Science Foundation of China
under Grant No. 60672088.

of software, high-level program language can be used, so it is easy
for DSP to add or modify functions. In the other aspect of
hardware, DSP has its own very long instruction word (VLIW)
CPU architecture, multi-level memory organization and assembly
language. Those characteristics should be considered in
optimization work. Recently, special kinds of DSP, like TI
TMS320DM642, Philips PNX1700, etc, address the needs of video
processing, making DSP widely used in video applications.

The purpose of this paper is to accelerate ME by weak
processing correlation and efficient software pipelines. The rest of
this paper is organized as follows. In Section 2, the challenges in
large search-range ME (LSR-ME) are discussed. In Section 3, the
block correlations in variable block-size ME (VBS-ME) are
removed from the DSP-oriented viewpoint. In Section 4, software
pipelines for the proposed “index search” algorithm are designed
in detail, and simulated results are demonstrated to show its
effectiveness. Finally Section 5 concludes the paper.

2. CHALLENGES IN LSR-ME

For high resolution video, the search range should be large enough
to keep high coding efficiency. The traditional search strategies
like 3SS, DS, etc, can do well in a small range ±8. But in LSR-ME,
they are likely to drop into a local minimum in the early stages of
search process which results in low coding efficiency. In order to
avoid local minimum points, global search is usually performed
with many sampled points over the whole search window. Then
local search is performed to refine the motion vector.

In early time, Grid-2 [8], shown in Fig. 1(a), was used to
perform global search. There is a search point every two grids
vertically and horizontally. The total points are nearly 1/4 of full
search. The computation is still heavy. Experiments show that the
picture’s quality will drop rapidly as the grid size increases. Later
on, UMHexagonS [3], shown in Fig. 1(b), was presented and has
been adopted in H.264 and AVS reference software. Such grids
have been proved to be efficient in LSR-ME. According to Table I,
the global search occupies more than 93% computation, so
accelerating global search is important for fast ME.

 (a) Grid-2 (b) UMHexagonS

Fig. 1. Global search points in Grid-2 and UMHexagonS (when SR=8)

V - 1891-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

TABLE I
SEARCH POINTS STATISTICS

Grid-2 Grid-4 UMHexagonS SR
global local global local global local
1024 8 256 16 193 10 - 15 32

99.2% 94.1% 93.9%*
2304 8 576 16 281 10 - 15 48

99.7% 97.3% 95.7%*
4096 8 1024 16 352 10 - 15 64

99.8% 98.5% 96.6%*
* Assumption: local search point number is 12.5.

TABLE II
PROBABILITY OF THE BEST MATCHED BLOCK IN THE SEARCH AREA OF

BLOCK 16X16
Frame \ Mode 16x8-0 16x8-1 8x16-0 8x16-1

P frame 99.74% 97.53% 98.54% 98.30%
B frame 99.91% 99.65% 99.76% 99.73%

Frame \ Mode 8x8-0 8x8-1 8x8-2 8x8-3
P frame 98.98% 98.68% 98.41% 98.27%
B frame 99.88% 99.85% 99.78% 99.71%

Note: every value is the minimum of the seven sequences, S1-City, S2-
Crew, S3-Harbor, S4-Night, S5-Raven, S6-Sailormen, and S7-Sheriff.

TABLE III
PERFORMANCE COMPARISON BETWEEN THE IMPROVED ME

ALGORITHM AND THE EARLY TERMINATION TECHNIQUE
(a) PSNR GAIN (dB)

QP 20 24 28 32 36 40 44
S1 0.000 -0.001 -0.001 -0.003 -0.004 -0.004 -0.006
S2 0.021 0.024 0.023 0.016 0.014 0.014 -0.004
S3 0.002 0.002 0.001 0.002 -0.001 0.001 0.000
S4 0.012 0.011 0.009 0.010 0.007 0.011 0.005
S5 0.009 0.018 0.035 0.042 0.019 -0.028 -0.036
S6 0.006 0.005 0.004 0.003 -0.002 -0.003 -0.008
S7 0.005 0.004 0.002 -0.001 0.002 0.000 0.000

 (b) BIT RATE INCREMENT (%)
QP 20 24 28 32 36 40 44
S1 0.005 0.038 0.128 0.222 0.494 0.503 0.726
S2 0.282 0.559 0.909 1.236 1.314 1.784 2.341
S3 0.029 0.033 0.099 0.178 0.351 0.566 0.734
S4 0.315 0.435 0.632 0.901 1.249 1.928 2.535
S5 0.219 0.290 0.330 0.558 1.976 4.558 3.703
S6 0.251 0.348 0.488 0.653 1.189 2.272 3.043
S7 0.070 0.097 0.111 0.264 0.292 0.497 0.702

Note: Sequences S1 to S7 are same with TABLE II.

The early termination strategy in [4] was presented to reduce
the computation of UMHexagonS. Our experiments showed that
this strategy can reduce average 52% global search points for the
tested 720p sequences. Unfortunately, there are lots of floating-
point operations, which can be a disaster for fixed-point DSP. For
example, the executing time for 8x8 and 16x16 SAD calculation
are respectively 31 and 67 cycles according to DSP image/video
processing library, but even if a fixed-point division needs 25
cycles [9], say noting of floating-point operations. Therefore, it
needs another way to implement fast ME on fixed-point DSP.

Data reuse strategy can be adopted instead of early termination
technique to reduce the computation of global search, but the block
correlations introduced by VBS limit the usage of this strategy. So
in the next section, we are going to analyze VBS-ME and find out
solutions to remove the block correlations.

3. CORRELATIONS IN VBS-ME

The Lagrangian cost function

J(m) = SAD(o,r,MV) + motion·R(MV-PMV) (1)
takes motion vector (MV) cost into consideration. The prediction
of MV (PMV) of each block is generally gathered by the left, top,
and top-right neighboring blocks, and PMV also points to the
search center of each block. Therefore, the current block can be
processed only after the prediction modes of the neighboring
blocks have been determined. These correlations cause inevitable
sequential processing flow and limit wide uses of background
transfer [10], both of which result in low DSP efficiency.

Assume that pmv0 is the PMV of the block 16x16, and VBS is
from 16x16 to 8x8. The statistics in Table II shows almost every
best matched block (no matter the block is finally selected or not)
can be found in the search area of block 16x16. If all the blocks
use pmv0 as their own search centers, they will still find out the
best point as usual. What’s more, their global search paths are
same, so SAD of big block can be combined with small blocks’,
which is important for data reuse in DSP implementation. To
accord with the cost function (1), PMV of each block is
temporarily replaced by pmv0 only during the period of ME. This
modified DSP-oriented algorithm can be adopted instead of the

early termination technique. Table III lists the detailed
performance of the improved algorithm compared with the current
early termination technique. The average PSNR gains about
0.005dB and the average increment of bit rate is 0.866%.

4. SOFTWARE PIPELINES DESIGN FOR ME

4.1. Index Search

According to Section 3, all the nine blocks adopt the same PMV
during global search, so the MV cost motion·R(MV-PMV) needs
only to be calculated once for one position, and SADs of all 8x8
blocks need to be calculated to setup other bigger blocks. Thus, the
computation is already reduced greatly. Furthermore, DSP can still
save more time due to its software pipeline if carefully designed.

Before designing pipelines, an array “index” is defined first.
The array “index” previously stores the horizontal and vertical
offsets, since all global search paths are fixed to the start center.
These offsets correspond to the points in Fig. 1(b). Thus DSP can
follow the stored order in “index” to perform ME, and we call this
method “index search”. Then operations with the same function
are processed together, and it is helpful to design efficient
pipelines. Three steps of global search are listed as follows:
Step1: For all the points in “index”, calculate motion·R(MV-PMV)
and store the results to array “mvcost”.
Step2: For all the points in “index”, calculate SAD of the 8x8
block and store the results to array “sad”. Repeat this step four
times to get all 8x8 blocks’ SAD.
Step3: Combine four “sad” and “mvcost” to create all nine blocks’
costs. Compare and store the minimum cost and the corresponding
index number for each block, in order to be refined in local search.

Our design is based on TI TMS320C64x DSP. The CPU of
such DSP has two similar data paths (A/B), and each data path
mainly consists of 32 register files and 4 functional units. As for
this architecture, high parallelism is achieved by software pipeline.
There are total eight functional units in CPU, so in a single clock
cycle, CPU can execute a maximum of eight instructions in
parallel, reaching its peak performance. More detailed information
of this kind of DSP can be found in [11].

V - 190

Fig. 2. Dependency graph of Step2

Note: “A_box” and “B_box” are sub-graphs only to make the whole graph clear, NOT functions.

Fig. 3. Dependency graph of Step3

Dependency graph is a useful tool for efficient DSP software

pipeline design. Each node in the dependency graph denotes an
operand, and edges connecting the nodes denote instructions. The
dependency graph can also indicate how to allocate data paths. The
basic rule of drawing the graph is that all the resources on each
side of CPU data path should be balanced. Since Step1 is simple,
we only elaborate on Step2 and Step3.

In Fig. 2, pixels of source 8x8 block have been preloaded into
eight register pairs (sxh:sxl). The DOTP2 instruction calculates the
search position’s offset in the reference frame and the LDNDW

instruction loads eights pixels from reference frame into another
eight register pairs (rxh:rxl). Then, the SUBABS4 and DOTPU4
instructions are used together to do 1x4 SAD, so 8x8 SAD is
completely unrolled by 16 pairs of SUBABS4 and DOTPU4
operations, which compose the main loop kernel. At last, the STH
instruction stores the summed up result to memory. In step2,
functional unit, .M1, .D1, .S1 and .L2 are all used nine times,
which determine the minimum loop kernel is 9 cycles.

The first part of Fig. 3 is a kind of data reuse. In the rest part of
Fig. 3, the CMPGTU instruction compares the current cost with

V - 191

the recorded minimum cost. If current cost is better, minimum cost
is replaced by current cost and the corresponding position (index)
is stored as well. In the period of cost replacement, a lot of “data
move” instructions are used. MV is a single-cycle instruction and
moves a value from one register to another through .L, .S or .D
unit. MVD is a four-cycle instruction and moves a value from one
register to another through .M unit. Although MVD instruction has
more operation cycles than MV instruction, .L, .S and .D units are
mostly occupied by other instructions like ADD and LDHU. In
order to balance all kinds of functional units, MVD instruction is
adopted to full fill the pipeline. As shown in Fig. 3, six MVD
instructions are used in either side A or B. This code thus executes
a maximum of eight instructions per cycle, and its loop kernel is
six cycles long.

4.2. Simulated Results

Table IV shows benchmarks of each step, then the total global
search cycles for index search is (3n+24)+4×(9n+34)+(6n+35)
=45n+195. In order to show the effectiveness of index search, we
also optimize the original ME algorithm with “DSP image/video
processing library” [9] which has been highly optimized by hand-
writing assembly language, and then compare them. The cycles of
original algorithm are calculated as follows: the cycles of 16x16,
16x8, 8x16, 8x8 SAD are 67, 43, 43, 31 respectively according to
DSP library, and 10 more cycles should be added for each block
because of motion·R(MV-PMV) calculation and costs comparison.
Then the total global search cycles for original algorithm is
(77+2×53+2×53+4×41)×n=453n. When search range is 32 (n=193),
index search can save 89.8% of global search time. In fact the
proportion is still higher, because the cycles for loop control and
offset calculation are not considered. This great time reduction is
achieved based on high-density pipelines, not for reasons of
decreasing search points.

Having taken local search into consideration, Table V shows
the average cycle per macroblock (MB) on DSP platform. Index
search can reduce more than 84.4% cycles and is proved to be
efficient for LSR-ME and VBS-ME.

TABLE IV

BENCHMARKS OF EACH STEP IN INDEX SEARCH
Step Cycle Code size

1 3n+24 172 bytes
2 9n+34 588 bytes
3 6n+35 753 bytes

Note: n is the global search point number.

TABLE V
COMPARISON OF AVERAGE CYCLE PER MB

SR Original (use DSP Lib [9]) Index search Cycle reduction*
32 93092 14543 84.4%
48 132956 18503 86.1%
64 165119 21698 86.9%

* (1-index search cycle/original cycle)×100%

4.3. Index Search Extension

Variable search range can be easily achieved by controlling the
index search number. And different search patterns can also be
achieved by modifying index array. For example, if the search
points in Fig. 1 are stored into index array, the algorithm will
perform Grid-2 search. Or if all points stored, it will change to be

fast full search. Irregular search paths are also fully supported by
index search. In a word, once all search points have been mapped
into one dimensional array, DSP can setup highly parallel pipelines
to perform ME.

5. CONCLUSIONS

From algorithm level and pipeline level, this paper elaborates on
efficient designs for motion estimation in high resolution video
coding on fixed-point DSP platform. Through the analysis of LSR-
ME and VBS-ME in high resolution video coding, this paper
presents a DSP-oriented search algorithm. The proposed method
avoids block correlation and adopts data reuse technique. The
experimental results show that the improved algorithm has almost
the same performance comparing with the early termination
technique in the reference software when coding 720p sequences.

Based on the improved algorithm, this paper also proposes the
“index search” method for DSP implementation. This method does
not decrease the search points but can still save much time,
because three highly parallel pipelines can be built up with the
help from “index search”. The fully use of pipelines brings about
85% time reduction during motion estimation. Thus this paper
provides a good solution to achieve both high coding efficiency
and high coding speed on the DSP platform.

6. REFERENCES

[1] T. Koga, K. Iinuma, A. Hirano, Y. Lijima, etc, “Motion
compensated interframe coding for video conferencing,” in Proc.
Nat. Telecommunications Conf. 81, pp.G5.3.1-G5.3.5, Nov. 1981.
[2] Shan Zhu and Kai-Kuang Ma, “A new diamond search
algorithm for fast block-matching motion estimation,” IEEE Trans.
Image Processing, Vol. 9, No. 2, pp. 287-290, Feb. 2000.
[3] Zhibo Chen, JianFeng Xu, Peng Zhou, and Yun He, “Hybrid
unsymmetrical-cross multi-hexagon-grid search strategy for
integer pel motion estimation in H.264,” in Proc. PCS, May 2003.
[4] J. Xu, Z. Chen, and Y. He, “Efficient fast ME predictions and
early-termination strategy based on H.264 statistical characters,” in
Proc. ICICS-PCM, Vol. 1, pp. 218-222, Dec. 2003.
[5] “Draft ITU-T recommendation and final draft international
standard of joint video specification (ITU-T Rec. H.264/ISO/IEC
14 496-10 AVC),” in Joint Video Team (JVT) of ISO/IEC MPEG
and ITU-T VCEG, JVTG050, 2003.
[6] “Final draft of information technology – advanced coding of
audio and video – part 2: video,” in AVS workgroup Doc. N1214,
Shanghai, China, Sep. 2005.
[7] Tae Gyoung Ahn, etc, “Fast Full-Search Motion Estimation
Based on Multilevel Successive Elimination Algorithm,” IEEE
Trans. CSVT, Vol. 14, No. 11, pp. 1265-1269, Nov. 2004.
[8] Fang-Hsuan Cheng and San-Nan Sun, “New fast and efficient
two-step search algorithm for block motion estimation,” IEEE
Trans. CSVT, Vol. 9, No. 7, pp. 977-983, Oct 1999.
[9] TMS320C64x DSP Image/Video Processing Library
Programmer's Reference,SPRU023A, Apr.2002, http://www.ti.com
[10] Zhigang Yang, Wen Gao, and Yan Liu, “Performance-
Complexity Analysis of High Resolution Video Encoder and Its
Memory organization for DSP Implementation,” in Proc.ICME06,
pp. 1261-1264, July 2006.
[11] TMS320C64x/C64x+ DSP CPU and Instruction Set
Reference Guide, SPRU732A, Jun. 2005, http://www.ti.com

V - 192

