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ABSTRACT

In this article we introduce a closed form estimation of the pose
determination problem. Unlike most other approaches our method
minimizes a Euclidean error to re-projected image points. If we
know the distances between these point we can reconstruct the 3D
position of the points completely. If the exact distance is unknown
the reconstruction is correct up to a scale factor. We compare our
approach to several methods to estimate the pose and orientation of
a planar pattern observed by a calibrated camera. All compared ap-
proaches are closed form solutions and take only one image for the
pose estimation. The gain of the proposed method is not only a bet-
ter starting value for non-linear optimizations but also its applica-
bility for mobile solutions on constrained hardware. Therefore, we
compare the error of the estimated pose to the ground truth for the
investigated methods.

Index Terms— pose estimation, planar pattern, Euclidean er-
ror, re-projection

1. INTRODUCTION

The purpose of this work is to estimate the position of points w. r. t.
a camera. We assume that we know that the observed points are
equidistant and collinear. The standard approach to this problem de-
pends on the so called pinhole assumption. Distorted images must
be undistorted before applying this method, which uses the fact that
every observed 3D movement is determined by a homography. The
determination of this homography implies often a non-linear opti-
mization itself (see [1]). For time-critical applications such a non-
linear optimization can be too time-consuming. In this article we
present two re-projective methods that do not need any non-linear
optimization. Both methods exploit the simple structure of the given
problem. The collinearity of the observed points simplifies the the
search for the optimal rotation and allows a pure algebraic approach
to the problem. Of course, both methods determine no optimal solu-
tion to the (projective) pose determination problem.

2. THE CAMERA MODEL

2.1. The projective camera mapping

In our context the term “camera” consists of a camera (including
the lens), a frame-grabbing device and the displayed image. The
camera mapping K : R

3 → R
2 defines the way by which an object

point p ∈ R
3 will be displayed in the image. The common way to

model the camera mapping K : R
3 → R

2 in computer vision is to
do a coordinate transformation T followed by a dimension reducing
mapping Π : R

3 → R
2, resulting in K = Π ◦ T .
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The so called extrinsic parameters T define the transformation
from a given reference coordinate system to the camera coordinate
system. Since we are interested in the pose and orientation of a pla-
nar prototype w. r. t. to the camera only, in our context it is T = id.

Π is a central projection followed by a coordinate system trans-
formation. For theoretical analysis many authors consider only this
pure pinhole camera model. For a realistic camera modeling a dis-
tortion mapping in the image plane has to be considered, which leads
to a pinhole camera model with distortion (see e. g. [1]).

The first part of Π is the projection of a 3D-point on the camera
plane. Let Pz : R

3 \ {z = 1} → R
2 denote the central projection

w. r. t. the z-coordinate: Pz((x, y, z)t) = (x
z
, y

z
)t. The distortion

mapping δ : R
2 → R

2 is defined in the camera plane w. r. t. the
camera coordinate system. The most common distortion model is
the one of radial distortion:
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with parameters k1, . . . , kD where in most cases it is D = 2.

The last step of the projection part Π accomplishes the change
of the camera coordinate system to the (computer) image coordinate
system (a change of units from metric to pixel). We set
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2 → R
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where (u0, v0) is the projection of the optical center in pixel coordi-
nates. All parameters defining the mapping Π are called the intrinsic
camera parameters.

Recapitulating the parameterization of a camera mapping K splits
into the parameterization of P, δ and T with K = P ◦ δ ◦ Pz ◦ T .
With T = id we are only interested in the intrinsic camera parame-
ters Π = P ◦ δ ◦ ZProj. For a pure pinhole camera it is δ = id in
this formula. See [2] for more details.

2.2. Re-projection of image points

As mentioned before each point in the image plane determines a
straight line in the reference coordinate system intersecting the pin-
hole of the camera by re-projection. Let A ⊂ R

2 be the image plane
of the camera, then the re-projected ray of a point i ∈ A is defined
by the pre-image of i under K. In our camera model K−1({i}) is a
straight line (the so called viewing ray).

This means Π−1 = (P ◦ δ ◦ Pz)
−1 = P−1

z ◦ δ−1 ◦ P−1 is
not well defined: The set P−1

z ({(u, v)t}) = {s(u, v, 1)t|s ∈ R},
for (u, v) ∈ R

2, is a straight line in R
3 with direction (u, v, 1)t

containing the origin. In order to construct a well defined function
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P−1
z we choose a suitable representative of P−1

z ({(u, v)}) by set-
ting P−1

z ((u, v)t) := 1√
u2+v2+1

(u, v, 1)t . Note that this represen-

tative has norm 1. It is the direction of the viewing ray.

3. EUCLIDEAN POSE DETERMINATION

For the re-projective pose estimation we are able to formulate a
closed form solution of the pose determination problem, which is
optimal in the Euclidean sense. This means that the distance of the
determined pose of the prototype to the re-projected observed points
is minimal.

Let P = {p1, . . . , pm} ⊂ R
3 be a finite set of collinear points

w. r. t. the reference coordinate system. P is called prototype. With-
out loss of generality let pj = (xj , 0, 0) ∈ R

3 for all pj ∈ P. For
every pj ∈ P we denote ipj ∈ A for the observed projection of pj

in the image plane A ⊂ R
2 w. r. t. the image coordinate system and

define nj = P−1
z (ipj ). Furthermore, we assume that not all ipj are

equal.

For a direction n ∈ S2 := {x ∈ R
3 | ‖x‖ = 1} we define

Ln := {αn |α ∈ R} as the line with direction n containing the
origin. It is easy to see that for every point p ∈ R

3

dist(p, Ln)2 = ‖(I − Nn)p‖2
(2)

holds, where Nn is the observed line-of-sight projection matrix de-
fined as Nn = n nt and I is the 3×3 identity matrix. The Euclidean
pose estimation problem is to obtain R ∈ {U ∈ R

3×3 | det(U) =
1 ∧ UU t = I} and t ∈ R

3 minimizing the least-squares sum

mX
j=1

dist(Rpj + t, Lnj )
2.

Since Rpj + t = xj · r1 + t, where R = (r1, r2, r3), and using (2)
we get

mX
j=1

‖(I − Nnj )(xjr1 + t)‖2

=
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Using the abbreviations

M1 =
mX

j=1

(I − Nnj ), M2 =
mX

j=1

xj(I − Nnj )

and

M3 =
mX

j=1

x2
j (I − Nnj )

the Euclidean pose determination problem is to obtain r1 ∈ S2 and
t ∈ R

3 minimizing

rt
1M3r1 + 2rt

1M2t + ttM1t. (3)

Since this minimization problem is quadratic in t, given a fixed vec-
tor r1 ∈ S2, the optimal value for t can be computed in closed form
as

t = −M−1
1 M2 r1. (4)

For (4) to be well-defined, M1 must be positive definite, which can
be verified as follows:

For any x ∈ R
3 \ {0}, it can be shown that

xtM1x = xt

 
mX

j=1

(I − Nnj )

!
x =

=
mX

j=1

(‖x‖2 − xtNnj x) =
mX

j=1

(‖x‖2 − xtN t
nj

Nnj x) =

=
mX

j=1

(‖x‖2 − ‖Nnj x‖2) (5)

While ‖x‖2 − ‖Nnj x‖2 can be greater than or equal to zero, not all
summands can be equal to zero unless all image points ipj are equal.
Since this case is excluded, (5) is strictly greater than zero in every
case. Therefore follows the positive definiteness of M1.

Given the optimal translation as a function of r1 (3) can be
rewritten as

min
r1∈S2

rt
1(M3 − M2M

−1
1 M2)r1. (6)

Since M1, M2 and M3 are symmetric matrices the matrix M3 −
M2M

−1
1 M2 is also symmetric. Therefore, (6) is an eigenvector

problem, where a normalized eigenvector to the smallest eigenvalue
of M3 − M2M

−1
1 M2 is a solution (c.f. [3]).

4. NON EUCLIDEAN POSE ESTIMATION

4.1. Standard pose estimation

A standard technique to obtain a starting value for the non-linear
pose calculation problem is to exploit the observed homography.
Since the points of the prototype P are collinear the following ap-
proach can be applied:

By abuse of notation, we still use pj to denotes a point on the
prototype, but pj = (xj) since the second and third coordinate are
always equal to 0. In turn, epj = (xj , 1)t. Let H ∈ R

3×2 be the
matrix describing the movement of the prototype P to the observed
image points, i.e. H minimizes the error function

mX
j=1

‖Pz(H epj) − ipj‖2. (7)

Obviously H can be determined only up to a scalar factor. The com-
putation of H requires a non-linear optimization to achieve an appro-
priate solution. This requires an initial matrix, which can be obtained
as follows.

Let hi ∈ R
2 be the i-th row of H . Instead of minimizing (7) the

problem

min
‖H‖=1

‖H epj − (h3 epj)fipj‖2

is considered (‖H‖ denotes the Frobenius norm of the matrix H ,

‖H‖ =
qP3

i=1

P2
j=1 h2

ij). This can be rewritten as

min
x∈R

6
,‖x‖=1

‖Lx‖ (8)
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with the matrix

L =

0BBBBB@
ep1

t 0 −u1 ep1
t

0 ep1
t −v1 ep1

t

...
...

...fpm
t 0 −umfpm

t

0 fpm
t −vmfpm

t

1CCCCCA ∈ R
2m×6

where ipj = (uj , vj). The rows of the matrix H can be found in the
vector x.

The solution of (8) is well known to be the eigenvector associ-
ated with the smallest eigenvalue of LtL ∈ R

6×6. With this starting
value the minimization problem (7) is solved with the Algorithm of
Levenberg and Marquardt.

For pinhole cameras it is μH = P̃ (r1, t) for a μ ∈ R, where
R = (r1, r2, r3) and t determine the transformation of the observed
prototype P. For a calibrated camera we know

P̃ =

0@α γ u0

0 β v0

0 0 1

1A
yielding (r1, t) = μP̃−1H =: M . Since the first column of (r1, t)
must be a unit vector and tz ≥ 0 should hold, we set

c =
q

M2
1,1 + M2

2,1 + M2
3,1

and

M̃ =

j
1
c
M , if M3,2 > 0 holds

− 1
c
M , otherwise

.

The first column of R and t can be obtained by the equality (r1, t) =

M̃ . Let r2 be a unit vector with rt
1r2 = 0 and r3 = r1 × r2. Then

R = (r1, r2, r3) is the rotation matrix searched.

4.2. A re-projective algebraic approach

In [4] we presented an approach based on the theorem of intersecting
lines. For each point p ∈ Ln1 we determined two points q1,2 on an
other viewing ray Ln2 with a fixed given distance (see Fig. 1). The
two points p, q1, respectively p, q2, define a line in space. If we
now know that a third point r1, respectively r2, is collinear to these
two points at a given distance, we can determine the distance of this
point to its viewing ray Ln3 using this collinearity constraint. If we
predict the first point along its viewing correctly this last distance
should be zero. This distance can be described by a function of the
form F1,2(x) = ax2 ± bx

√−cx2 + d2 + e by the position of the
first point (along its re-projected viewing ray). The result is a root
or a minimum of the distance function. In [4] we observed that the
determination of the minimum leads to more stable algorithm.

Ln1

Ln2r1

Ln3

r2

p

q2 q1

Fig. 1. Construction of p, r1,2 and q1,2. The distances dist(r1, Ln3)
and dist(r2, Ln3) should be minimized.

Of course, this approach minimizes an algebraic error which
may lead to a result which may not be optimal with respect to the
Euclidean distance.

Fig. 2. Reconstruction errors for the 6 mm setup for 12 different
positions, where the prototype plate is nearly parallel to the camera
plane (top). The middle and bottom diagram are associated with a lit-
tle and big skewness between prototype plate and camera plane. Left
columns: standard pose estimation, middle columns: re-projective
algebraic approach, right columns: proposed method

5. EXPERIMENTAL RESULTS

For our experiments we chose a standard CCD camera with a 1/3”
chip with low cost 6 mm, 8 mm and 12 mm lenses. To calibrate our
cameras we use the calibration algorithm described by Zhang ([1])
including radial distortion parameters k1, k2 determining the radial
distortion δ(u, v) := (u + u(k1r

2 + k2r
4), v + v(k1r

2 + k2r
4))

with r2 := u2 + v2. We use a 9 × 5 grid of equidistant (5 cm) tiny
points, which define our prototype P. The points were extracted by
an algorithm described in [5], which bases on an approximation by
polynomials of total degree 2 in a 3 × 3 pixel neighborhood.

We reconstruct an observed grid by determining the pose of
equidistant collinear points on two perpendicular lines on our pro-
totype. A third direction can be obtained as the cross product of
the directions of the first two lines. So we are able to estimate the
whole transformation R, t of the prototype’s coordinate system to
the reconstructed coordinate system. The ground truth is defined by
the transformation minimizing (R, t) �→P

p∈P ‖ip −Π(Rp+ t)‖2

which we determine using the non-linear optimization method of
Levenberg and Marquardt. In our coordinate system the x and y axes
are the axes of the camera plane. The z-axis (depth) is perpendicular
to them. For each setup we used twelve different positions of the
prototype P. To compare the closed form solution of the standard
pose estimation, the re-projective algebraic approach and the new
method we use 3 collinear points {p1, p2, p3} from the prototype.
Using this 3 points rotation and translation are computed applying
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the three methods. Let Rs, ts, Ra, ta and Rn, tn be the solution
of the starting value of the standard pose estimation, the algebraic
approach and the proposed technique, respectively. The reconstruc-
tion error is defined as 1

3

P3
i=1 ‖(Rpi + t) − (Rxpi + tx)‖2 for

x ∈ {s, a, n}.
Fig. 2 - 4 shows the reconstruction error for the standard tech-

nique, the algebraic approach and the proposed method for three dif-
ferent lens setups (6 mm, 8 mm, 12 mm). For every setup we obtain
the parameters in the matrix P̃ and the radial distortion parameters
by the calibration algorithm due to Zhang [1]. The estimated radial
distortion parameters are: k1 = −0.2046, k2 = 0.1673 for the
6 mm setup, k1 = −0.19612, k2 = 0.17438 for the 8 mm setup and
k1 = −0.0703, k2 = −0.0549 for the 12 mm setup.

Fig. 3. Reconstruction errors for the 8 mm setup for 12 different
positions, where the prototype plate is nearly parallel to the camera
plane (top). The middle and bottom diagram are associated with a lit-
tle and big skewness between prototype plate and camera plane. Left
columns: standard pose estimation, middle columns: re-projective
algebraic approach, right columns: proposed method

One can see that for almost all cases the proposed method leads
to a rotation matrix and a translation vector such that the transformed
points {p1, p2, p3} are closer to the ground truth points than the pro-
jective reconstruction and the algebraic approach does. The values
show that the reconstruction error is increasing if the angle between
the z-axis and the camera plane is decreasing.

6. CONCLUSION

In this article we presented a closed form solution for the pose esti-
mation problem for collinear points with a known distance to each
other. An advantage of the re-projective closed form solutions for
3D-pose estimation is that it’s re-projective nature includes the dis-
tortion function of the camera mapping. But in contrast to prior pub-
lications the proposed method minimizes the Euclidean distance to
the re-projected observations. So, in contrast to the algebraic ap-
proach every point is weighted uniformly. Errors in the extraction of

Fig. 4. Reconstruction errors for the 12 mm setup for 12 different
positions, where the prototype plate is nearly parallel to the camera
plane (top). The middle and bottom diagram are associated with a lit-
tle and big skewness between prototype plate and camera plane. Left
columns: standard pose estimation, middle columns: re-projective
algebraic approach, right columns: proposed method

the observation point in the actual image will be smoothed out. The
simplicity of the proposed solution w. r. t. the Euclidean error to the
re-projections - i. e. the solution of a simple eigenvalue problem of
a 3 × 3-matrix. Therefore, this solution is particularly suitable for
simple hardware, which is used in autonomous solutions.

It should be mentioned that all analyzed camera setups were cal-
ibrated w. r. t. the projective error. A re-projective calibration is not
common in computer vision, but can also be advantageous in some
situations (see [2]). For such calibrated cameras an even better per-
formance of the proposed solution can be expected.
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