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ABSTRACT 
 
Finding epipolar geometry for two images is a fundamental 
problem in computer vision. While this typically relies on 
feature point correspondence, the epipolar constraint can 
also be used for improving the accuracy of correspondence. 
We propose a probabilistic framework for estimating the 
epiploar geometry, in which the geometry and the feature 
correspondence are estimated iteratively at the same time. 
Using the EM algorithm to maximize a posteriori, our 
approach updates feature correspondence with estimated 
epipolar geometry. The correspondence is further improved 
with local diffusion on a prior Markov Random Field model. 
In turn, more accurate epipolar geometry is recovered. 
Experiments show this approach produces more accurate 
fundamental matrix compared with typical methods and can 
handle some challenging situations such as view rotation 
and scale changes. 
 
Index Terms— Epipolar Geometry, EM Algorithm, MAP, 
local diffusion

1. INTRODUCTION 
Two perspective images of a common scene are constrained 
by the so-called epipolar geometry [1]. It can be described 
as, given any point x in the first image, if it is the projection 
from a 3D point X in the scene, the projection x' in the 
second image must be on a line determined by x which is 
called epipolar line. The epipolar geometry can be written as 

xFx' = 0
where F is a 3×3 matrix called the fundamental matrix. 

A typical way to find the epipolar geometry from two 
images includes two main stages. In the first stage, two sets 
of feature points are detected in the two images separately, 
and then inter-image correspondence is established for the 
features. Among others, commonly-used feature detection 
and correspondence methods include those based on Harris 
corner detector [2] and those using Shift Invariant Feature 
Transform (SIFT) [3]. In the second stage, the fundamental 
matrix is estimated using the corresponded features. This 
usually starts with a linear solution, followed by nonlinear 
optimization (e.g., LMedS [4]). Most methods for this stage 
can be viewed as maximum likelihood estimation (MLE), 
and the quality of the estimate mainly relies on the accuracy 
of the feature correspondence, which remains a challenge 

despite many years of research. On the other hand, if the 
epipolar constraint is known, it makes the correspondence 
problem much easier since possible matches for a given 
feature are constrained to points on an epipolar line.  

In this paper, we propose a probabilistic framework, in 
which the Expectation-Maximization algorithm (EM) is 
used to estimate the epipolar constraint and feature 
correspondence iteratively at the same time. Explicit 
correspondence is avoided by a probabilistic representation. 
For more reliable probabilistic description of feature 
matching between two images, we encode the smoothness 
on adjacent pixels in two ways. Pixels around a corner 
within a small patch are treated as a unit by enforcing planar 
constraint. A prior is approximated by a Markov Random 
Field model to aggregate support from neighbor regions. 
We use local diffusion to solve this model. Therefore this 
problem becomes Maximum A Posteriori (MAP) estimation. 

2. RELATED WORK 
MAP has been proposed to replace simple RANSAC and 
MLE methods for epipolar geometry estimation [5][6]. 
Cham and Cipolla [5] present a multiscale method for 
feature matching in uncalibrated image mosaicing. They use 
parameters propagated from a coarse level as prior for the 
fine level estimation. This is pointed out as being 
problematic in [6] since the fine level data is not 
independent of that of the coarse level. Torr and Davidson 
[6] also use a multiscale scheme. The posterior distribution 
is passed from coarse level to fine level by the technique of 
sampling-importance-resampling and MCMC. While such 
multiscale methods prove to be an efficient way in solving 
the matching problem, texture details may be lost in the 
coarse level, causing some feature points useless. Not 
limiting to feature points, Domke and Aloimonos [7] 
present a probabilistic framework on frequency space, 
where all points could be used for matching after applying 
Gabor filter. A practical difficulty is that the method can be 
computationally very costly. 

3. PROPOSED METHOD 

3.1. EM Algorithm-based Formulation 
We first describe a general formulation of the problem. 
Given two perspective images I = {I0, I1} from a common 
scene, a feature point detector generates two sets of feature 
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points U0={u0j} and U1={u1k}, where j=1,…,m and 
k=1,…,n , with m and n being the numbers of features in the 
two images respectively. These points are projection of a set 
of 3D points X={xi}, i = 1,…q. In general m is not equal to 
n, and thus q is also undetermined. For some point in I0, 
there may be no corresponding point in I1 and vice versa. 
But for each point in X, there must be a pair of projections 
in U0 and U1. Since the correspondence is unknown, a 
hidden value J is introduced to model the projection from X 
to Ui, i=0,1, which also can be viewed as a geometry 
transformation from X to Ui. Since the viewpoints of I0 and 
I1 are in general different, a transformation R is further 
introduced. The goal is to maximize the posteriori 
probability of parameters =G given the data measurement 
U (the union of U0 and U1) and the hidden value T={J, R}, 
where G is the epipolar geometry expressed by a 
fundamental matrix. This is equal to maximizing the 
logarithm of the joint distribution, which is proportional to 
the posteriori by the Bayes rule 

* arg max log{ ( , )} arg max log ( , , )P P
T

U U T   (1) 

This computation needs to be done with all possible T, 
which results in combinatorial explosion and should be 
avoided. This is exactly the prime motivation of using EM 
algorithm here. By Jensen's inequality, a lower bound is 
obtained by transforming a log of sums to a sum of logs 
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Where f t(T) is defined as a probability distribution given 
an arbitrary transformation T from the hidden value space 
and it is constrained by 
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Taking the derivative and solving the Lagrange 
optimizer, we obtain 
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From (2), given current guess of parameters t, an 

optimal lower bound of the objective function is 
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Therefore the two step EM algorithm can be written as: 
E-step: Given current guess t, compute 

),|()( tt Pf UTT                         (3) 

M-step: Update  by maximizing the lower bound of 
objective function as 

)],([logmaxarg1 tt P U                      (4) 

3.2. The Likelihood Model 
To obtain the likelihood of data U given parameters , a 
simple approach is to consider the probability of each point 
in U as i.i.d. (we also assume that U0 and U1 play symmetric 
roles in the computation). For a 3D point xj, assuming it 
projects to uia on Ii. The probability that it also projects to 
u(1-i)b on I1-i is determined by both the geometry constraint 
G and the distance between uia and u(1-i)b in terms of feature 
descriptor measurement, noted as pG and pM. The objective 
function becomes 
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For the geometry constraint, we adopt the commonly 
used reprojection error which is 

),'(', iaiaG FuudFuudd  
where d is a Euclidian distance function. Note that not every 
point has a corresponding point in another image due to 
occlusion and failure of feature detector. We use a 
contaminated Gaussian model as a robust penalty function 

GGGGG dup )2/exp()1()|( 22          (6) 
The matching probability pM is defined as 

MMMMM dup )2/exp()1()|( 22         (7) 
where dM is Euclidian distance defined on pixel intensity or 
color values, which depends on image format. 

3.3. Feature Matching 
We use Harris corner as feature point. For each feature 
point, we assume that it is at the center of a small planar 
surface comprised of 5×5 pixels. When a planar patch 
matches to another view, they undergo certain geometry 
transformation which can be modeled by a homography, 
written as 
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where A is a 2×2 matrix, t is a translation vector and s is a 
scale factor. Since the translation is already considered in 
the projection hidden value J and if the patch is centered 
well with the feature point, t can be set to zero. A can be 
decomposed as 

1 0
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where R( ) and R( ) is a rotation matrix with rotation angle 
 and ,  is the patch rotation angle, and D and  

determines the patch deformation ratio and direction [8]. In 
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practice, patch matching is only sensitive to rotation while 
relatively insensitive to deformation given the fact that most 
patches in the images are not drastically deformed. 
Therefore we can safely approximate A with a rotation 
matrix parameterized by . 16 evenly spaced rotation angles 
are tested at the first matching iteration, sum of absolute 
difference (SAD) is used as matching score and the rotation 
angle with the smallest SAD is picked as an initial value for 
the EM algorithm. 

When the fundamental matrix is available, let l and l' be 
the epipolar lines that pass the two patches to be matched, it 
is easy to prove that two continuous pixels a and b along the 
epipolar lines will not change their relative position. As 
shown in Figure 1, the patch rotation angle  is obtained by 

)'(cos 1 ll

 
Figure 1: Estimate patch rotation from epipolar lines. 

The scale factor s can be estimated as follows: Draw an 
epipolar line l with the center point, draw two epipolar lines 
l', l" with the top center point a and the bottom center point 
b. The line segment that is perpendicular to l and through 
the center point in the transformed image intersects l' and l" 
at a' and b'. Then s is approximately estimated by 
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Figure 2: Estimate patch scale from epipolar lines. 

When a detected feature lies on object contours, the 
patch model is not accurate if pixels of the patch come from 
both the background and the foreground. Such features give 
unreliable information for matching but their inconsistent 
votes will typically be dominated by other correctly 
matched corners, assuming that more features do not lie on 
the object contours.  

3.4. The Prior Model 
In the likelihood model we consider the probability of each 
feature as i.i.d. for simplicity. In real images, features are 

highly correlated. Adjacent pixels are still adjacent after 
being transformed by function T to an image from another 
view, which is also called smoothness constraint. We use a 
Markov Random Field (MRF) [9] to encode preference of 
surface smoothness into a prior model pP 
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where ZP is a normalizing factor and the potential function 
EP is the sum of clique potentials. The idea of using MRF is 
to aggregate support from neighbors and to use this support 
as a prior. There are two potential issues with using MRF 
here. First, we do not have cliques for sparse feature points; 
secondly, it requires a large memory and expensive 
computation for probabilities of all possible T. We propose 
a local diffusion strategy to construct cliques for each 
feature point by expanding to its neighbor regions. The 
diffusion is undertaken only in local minimums obtained 
from the likelihood computation. We use nonlinear 
diffusion from [10] for its capability to handle multiple 
ambiguities in clique. The implementation can be described 
as follows. For a point u0j, if it finds a local minimum of 
match score at u1k with T', we also compute matching 
scores for 8 neighbor patches of u0j with T' and a shift on 
disparity d=-3,…,+3. We rewrite the log of probabilities in 
Eqn. (5) with E to represent energy. The diffusion process 
updates E as 
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where E0 is the initial energy from log(pMpG). ES is the log 
of the smoothed probability distribution pS 
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The updating is iterated only twice since the diffusion 
region is very small. 
3.5. The Complete Algorithm Workflow 
With all components introduced above, we present the 
complete algorithm as follows: 
    Step 1. For each image, a set of Harris corners are  
detected. Feature matching is performed with all 
combination of corner pairs from two images. The matching 
score is stored to compute pM. 
    Step 2. For a point u0j, if its best match is u1k, and the best 
match for u1k is also u0j, such consistent matched pairs are 
selected as seeds. We run random sampling and standard 7-
point algorithm to compute fundamental matrix from these 
seeds. The difference from normal RANSAC is that the 
criterion is the probability in Eqn. (5) and all points are 
computed, not only those matched pairs. 
    Step 3. The fundamental matrix that produces the best 
result will be used as the initial value for EM algorithm. 
Matching score is re-computed with the estimated 
fundamental matrix. 
    Step 4. Use random sampling or standard nonlinear 
optimization to find a better fundamental matrix based on 
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re-computed matching score. If no better result can be found, 
exit, otherwise go to step 3. 

Note that when we use Eqn. (5) to maximize the 
posteriori, we do not enforce the uniqueness constraint. It 
means that one point may be matched to two or more points. 
The reason is that explicitly enforcing uniqueness is a 
deterministic method and to find exclusively matched pairs 
to maximize the posteriori requires a combinatorial 
explosion of enumeration of all possible pairs. Since local 
diffusion is used to enforce the smoothness constraint, it in 
some way remedies the loss of the uniqueness constraint 
and our experiments show that this works reasonably well 
with object occlusions (as in Figure 4). 

4. EXPERIMENTAL RESULTS 
Sample experimental results are listed in Figure 3-5. We 
compare our results with the implementation of typical 
RANSAC and LMedS from OpenCV [11]. While OpenCV 
works fine in normal situations and gives the same result as 
our method, there are difficult cases where it gives 
obviously wrong result, as in Figure 3. Although there are 
many parameters used in both the EM algorithm and local 
diffusion in our approach, we use the same set of parameters 
for all experiments, which shows the performance is robust 
to parameter settings. 

5. CONCLUSION 
We present an approach to estimating the epipolar geometry 
and feature point correspondence more accurately and 
efficiently with EM algorithm. Experiments show the 
effectiveness of the approach, in comparison with typical 
existing techniques. By applying local diffusion and 
adaptive matching, our feature point matching is found to be 
relatively invariant to image rotation and scale changes. We 
plan to extend the system to be invariant to illumination 
change and able to segment pixels on different surfaces. 
This would lead to a surface reconstruction method. 
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Figure 3: Top: Incorrect epipolar geometry due to mismatches on 
zebra patterns. Bottom: Correct epipolar geometry with our 
method.  

 
Figure 4: Epipolar geometry computed on two images with view 
rotation and object occlusions. 

 
Figure 5: Epipolar geometry computed on two images with view 
rotation and scale change. 
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