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ABSTRACT

This paper presents a technique for high-accuracy correspondence
search between two rectified images using 1D Phase-Only Correla-
tion (POC). The correspondence search between stereo images can
be reduced to 1D search through image rectification. However, we
usually employ block matching with 2D rectangular image blocks
for finding the best matching point in the 1D search. We propose
the use of 1D POC (instead of 2D block matching) for stereo cor-
respondence search. The use of 1D POC makes possible significant
reduction in computational cost without sacrificing reconstruction
accuracy compared with the 2D POC-based approach. Also, the re-
sulting reconstruction accuracy is much higher than those of con-
ventional stereo matching techniques using SAD (Sum of Absolute
Differences) and SSD (Sum of Squared Differences) combined with
sub-pixel disparity estimation.

Index Terms— 3D measurement, stereo vision, stereo corre-
spondence, sub-pixel image matching, phase-based image matching,
phase-only correlation

1. INTRODUCTION

Recently the demand of high-accuracy 3D measurement is rapidly
growing in a variety of computer vision applications [1]. Existing
3D measurement techniques are classified into two major types —
active and passive. In general, active measurement employs struc-
ture illumination (structure projection, phase shift, moire topogra-
phy, etc.) or laser scanning, which is not desirable in many applica-
tions. On the other hand, passive 3D measurement techniques based
on stereo vision have the advantages of simplicity and applicabil-
ity, since such techniques require simple instrumentation. However,
poor reconstruction quality still remains as a major issue for passive
3D measurement, due to the difficulty in finding accurate correspon-
dence between stereo images [2].

The most common stereo correspondence techniques employ
Sum of Absolute Differences (SAD) or Sum of Squared Differences
(SSD), where corresponding points between stereo images can be
obtained by minimizing SAD or SSD in area-based block match-
ing [3, 4]. Although SAD and SSD exhibit low computational cost,
a major drawback is their low accuracy. Recently, sub-pixel block
matching techniques using SAD and SSD have been investigated [4],
but the obtained accuracy is not sufficient in some applications.

On the other hand, image matching methods using 2D Phase-
Only Correlation (POC) 1 exhibit much better matching performance

1“Phase-only correlation” is sometimes called the “phase correlation.”

than the methods using SAD and SSD in general [5, 6, 7]. The au-
thors have already developed POC-based passive 3D measurement
system, whose accuracy is comparable with those of projector-based
active 3D measurement systems [8, 9]. A drawback of POC-based
approach is its high computational cost in evaluating the 2D POC for
correspondence search, which limits the area of applications.

Addressing this problem, in this paper, we propose a technique
for high-accuracy correspondence search between two rectified im-
ages using 1D version of POC. The correspondence search between
stereo images can be reduced to 1D search through image rectifica-
tion. However, conventional approach is to employ block matching
with 2D rectangular image blocks for finding the best matching point
within 1D search interval. In this paper, on the other hand, we pro-
pose the use of 1D POC (instead of 2D block matching) for stereo
correspondence search. The use of 1D POC makes possible signifi-
cant reduction in computational cost without sacrificing reconstruc-
tion accuracy, compared with the 2D POC-based approach. Also, the
resulting reconstruction accuracy is much higher than those of con-
ventional stereo matching techniques using SAD (Sum of Absolute
Differences) and SSD (Sum of Squared Differences) combined with
sub-pixel disparity estimation [4]. A set of experiments demonstrate
that the stereo vision system employing the proposed technique can
measure 3D surfaces of free-form objects with sub-mm accuracy.

2. 1D PHASE-ONLY CORRELATION

This section defines the 1D POC function and a set of techniques
for high-accuracy image matching. Let I and J be rectified stereo
images as illustrated in Fig. 1. Given a reference point p in the image
I , the problem is to find the corresponding point q in the image J .
In the image I , we first extract the 1D image signal f(n) centered at
the reference point p along the epipolar line. Similarly, in the image
J , we extract the 1D image signal g(n) centered at q′ — the initial
estimate for the true corresponding point q. The points q and q′

should be on the common epipolar line corresponding to p. Let n (∈
{−M,−(M−1), · · · , 0, · · · , (M−1), M}) be the discrete spatial
index for the 1D image signals f(n) and g(n), where M is a positive
integer. The signal length N is given by N = 2M + 1. Note that
we assume here the sign symmetric index range {−M, · · · , M} for
mathematical simplicity. The discussion could be easily generalized
to non-negative index ranges with power-of-two signal length.

The 1D Discrete Fourier Transforms (1D DFTs) of f(n) and
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Fig. 1. Rectified stereo images.

g(n) are given by

F (k) =
MX

n=−M

f(n)W kn
N = AF (k)ejθF (k), (1)

G(k) =

MX

n=−M

g(n)W kn
N = AG(k)ejθG(k), (2)

where k = −M · · ·M and WN = e−j 2π
N . AF and AG are am-

plitude components, and ejθF (k) and ejθG(k) are phase components.
The cross-phase spectrum R(k) is defined as

R(k) =
F (k)G(k)

|F (k)G(k)|
= ejθ(k), (3)

where G(k) denotes the complex conjugate of G(k) and θ(k) =
θF (k)−θG(k). The 1D POC function r(n) between f(n) and g(n)
is the 1D Inverse DFT (1D IDFT) of R(k) and is given by

r(n) =
1

N

MX

k=−M

R(k)W−kn
N . (4)

In the following, we derive the analytical peak model for the 1D
POC function between the same signals that are minutely displaced
with each other. Now consider fc(x) as a 1D image signal defined in
continuous space with real-number index x. Let δ represents minute
(sub-pixel) displacement of fc(x). So, the displaced 1D image sig-
nal can be represented as fc(x− δ). Assume that f(n) and g(n) are
spatially sampled signals of fc(x) and fc(x − δ), respectively, and
are defined as

f(n) = fc(x)|x=nT , (5)

g(n) = fc(x− δ)|x=nT , (6)

where T is the spatial sampling interval, and index range is given by
n = −M, · · · , M . For simplicity, we assume T = 1. The POC
function r(n) between f(n) and g(n) is given by

r(n) � α

N

sin{π(n + δ)}
sin{ π

N
(n + δ)} , (7)

where α = 1. The above Eq. (7) represents the shape of the peak
for the 1D POC function between the same 1D image signals that
are minutely displaced with each other. This equation gives a dis-
tinct sharp peak. (When δ = 0, the 1D POC function r(n) becomes
the Kronecker delta function.) We can show that the peak value α
decreases (without changing the function shape itself), when small
noise components are added to the original images. Hence, we as-
sume α ≤ 1 in practice. The peak position n = −δ of the 1D
POC function reflects the displacement between the two 1D image
signals.
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Fig. 2. Set of 1D image signals used for averaging 1D POC func-
tions.

Thus, we can compute the displacement δ between extracted sig-
nals f(n) and g(n) by estimating the true peak position of the 1D
POC function r(n). Then, the corresponding point q for the refer-
ence point p is determined from q′ and δ as

q = q′ + (δ, 0), (8)

where q and q′ in this equation are regarded as the coordinate vectors
of the true corresponding point q and its initial estimate q′, respec-
tively.

Listed below are important techniques for improving the accu-
racy of 1D image matching for sub-pixel correspondence search.
(i) Function fitting for high-accuracy estimation of peak position
We use Eq. (7) — the closed-form peak model of the POC function
— directly for estimating the peak position by function fitting. By
calculating the POC function, we can obtain a data of r(n) for each
discrete index n. It is possible to find the location of the peak that
may exist between image pixels by fitting the function Eq. (7) to the
calculated data array around the correlation peak, where α and δ are
fitting parameters.
(ii) Windowing to reduce boundary effects
Due to the DFT’s periodicity, a signal can be considered to “wrap
around” at an edge, and therefore discontinuities, which are not sup-
posed to exist in real world, occur at every border in 1D DFT com-
putation. We reduce the effect of discontinuity at signal border by
applying 1D window function to 1D image signals. For this purpose,
we employ 1D Hanning window.
(iii) Spectral weighting for reducing aliasing and noise effects
For natural images, typically the high frequency components may
have less reliability (low S/N) compared with the low frequency
components. We could improve the estimation accuracy by applying
a low-pass-type weighting function to 1D POC function in frequency
domain and eliminating the high frequency components with low re-
liability. For this purpose, we use the Gaussian-type spectral weight-
ing function. The peak model Eq. (7) for function fitting should be
modified correspondingly.
(iv) Averaging 1D POC functions to improve peak-to-noise ratio
When image quality is poor, a single 1D POC function is not suf-
ficient for estimating accurate correspondence q due to degraded
Peak-to-Noise Ratio (PNR). We can improve PNR by averaging a
set of 1D POC functions evaluated at distinct positions around p and
q′. Figure 2 illustrates a typical situation. We extract B distinct 1D
image signals fi(n) (i = 1, 2, · · · , B) around the reference point
p in the image I . Similarly, we extract 1D image signals gi(n)
(i = 1, 2, · · · , B) around the initial estimate q′ in the image J .
Then, we compute the B distinct 1D POC functions ri(n) between
fi(n) and gi(n). By taking the average of ri(n) for i = 1, 2, · · · , B,
we have the overall correlation surface r(n) with significantly im-
proved PNR. Figure 2 illustrates a typical case of B = 5, which can
be easily generalized to arbitrary arrangement of 1D image signals.
Figure 3 shows an example of PNR improvement through averaging.

V - 222



PixelTrue peak position
-30 -20 -10 0 302010

-0.3

-0.2

0

0.2

0.4

0.6

Original 1D POC function
Averaged 1D POC function

Correlation value

Fig. 3. Averaging 1D POC functions to improve Peak-to-Noise Ratio
(PNR).

(v) Coarse-to-fine strategy for robust correspondence search
In our stereo matching algorithm based on 2D POC, we have adopted
a coarse-to-fine strategy using image pyramids for robust correspon-
dence search [9]. The reason is that dense stereo correspondence
requires matching of smaller image blocks, while the accuracy and
robustness of POC-based image matching degrade significantly as
the image size decreases. The coarse-to-fine approach is highly ef-
fective for solving this problem when combined with 2D POC. Our
observation shows that the same problem occurs also for 1D POC
when N becomes small, e.g., N = 32. Hence, we have devel-
oped a 1D version of the coarse-to-fine matching algorithm, where
we employ multi-resolution image pyramid (with 3 layers in typical
applications) for robust correspondence search.

3. EXPERIMENTS AND DISCUSSION

The proposed sub-pixel stereo matching technique allows us to im-
plement a high-accuracy passive 3D measurement system, whose ac-
curacy may be comparable with those of projector-based active 3D
measurement systems. In this section, we evaluate the performance
of the proposed technique in terms of computational cost and accu-
racy. We compare four different techniques using (i) 1D POC, (ii)
2D POC [9], (iii) SAD [4] and (iv) SSD [4], where each technique is
equipped with sub-pixel stereo matching capability.

3.1. Computational Cost

We evaluate the amount of computation required for finding a single
corresponding point q within a fixed size of 1D search interval. The
system parameters for the methods (i)–(iv) are optimized through
actual 3D measurement experiments as described in the section 3.2.
For (i) 1D POC, we assume that the length of 1D image signal is
N = 32 and number of 1D image signals to be averaged is B =
11. For (ii) 2D POC, (iii) SAD and (iv) SSD, we assume that the
matching block size is N1×N2 = 32×32. The length of 1D search
interval (i.e., maximum disparity) is 16 pixels. (Note that we assume
the use of coarse-to-fine strategy based on image pyramids.)

Table 1 summarizes the computational cost for finding a single
corresponding point, where “ADD”, “MUL”, “DIV” and “SQRT”
denote the number of additions, multiplications, divisions and square

Table 1. Computational cost for finding a single corresponding
point.

ADD MUL DIV SQRT

1D POC (11x32 pixels) 12,167 11,010 709 352
2D POC (32x32 pixels) 95,667 72,340 2,058 1024

SAD (32x32 pixels) 32,754 1 1 0
SSD (32x32 pixels) 39,925 20,487 2 0

Lens: μTRON, FV1520
          15 mm focal length
Image grabber: Coreco Imaging
                         X64-CL-DUAL-32M
Stereo baseline: 46 mm

Camera: Adimec-1000m/D
              10 bits digital resolution
              monochrome
              1004 x 1004 pixels

Measurement range: 400 ~ 600 mm

(a) (b)

Fig. 4. Stereo vision system: (a) stereo camera head, and (b) system
specification.

roots, respectively. By using 1D POC, significant reduction in com-
putational cost is expected in comparison with 2D POC, where the
number of additions/multiplications can be reduced to 1/7. Also, the
amount of basic arithmetic operations is comparable with the meth-
ods using SAD and SSD.

3.2. Accuracy of 3D Measurement

We carried out a set of experiments for evaluating the accuracy and
quality of 3D measurement. Figure 4 shows the stereo vision system
used in our experiments, where two parallel cameras form a narrow-
baseline stereo pair with baseline 46 mm. The system parameters
for image matching are N = 32 and B = 11 for 1D POC, and
N1×N2 = 32× 32 for 2D POC, SAD and SSD. All the techniques
described in the Sect. 2 are employed, where the number of layers
for coarse-to-fine search is 3.

At first, we evaluate the accuracy of 3D reconstruction using the
reference object of geometrically regular shape — a solid sphere of
radius 108.45 mm. The distance between the camera head and the
reference objects is around 500 mm. In order to evaluate measure-
ment accuracy for the solid sphere, we generate a best fitted sphere
for the measured points by the least-squares algorithm. Table 2 com-
pares the errors in 3D measurement by (i) 1D POC, (ii) 2D POC, (iii)
SAD and (iv) SSD. This result shows that the proposed sub-pixel
correspondence technique contributes to reducing the RMS (Root
Mean Square) error and the maximum error, significantly.

In addition, a human face — a typical example of free form ob-
jects — is measured to demonstrate the capability of high-quality
dense 3D reconstruction. Figure 5 (a) shows stereo images captured
from the stereo cameras. Figures 5 (b)–(e) compare the quality of
3D surfaces produced by (i) 1D POC, (ii) 2D POC, (iii) SAD and
(iv) SSD. The POC-based techniques (i) and (ii) can successfully re-
construct the smooth surface of the human face. The methods using
SAD and SSD tend to produce matching errors and their quality is
not high. To the best of the authors’ knowledge, the quality of 3D re-
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Table 2. Errors [mm] in 3D measurement of a sphere object.

1D POC 2D POC SAD SSD

RMS error 0.52 0.51 1.65 1.09
Max. error 1.92 2.09 25.68 24.06

construction using POC-based methods seems to be one of the best
that is available with passive 3D measurement techniques reported
to date. The result of this paper clearly suggests a potential possibil-
ity of our proposed approach to be widely used in many computer
vision applications.

4. CONCLUSION

This paper presents a technique for high-accuracy correspondence
search between two rectified images using 1D POC. The use of 1D
POC in 1D correspondence search makes possible to significantly re-
duce computational cost without sacrificing reconstruction accuracy
compared with the conventional 2D POC-based approach. Through
some experimental evaluations, we demonstrate that the stereo vi-
sion system employing the proposed technique achieves sub-mm (∼
0.48 mm) accuracy in 3D measurement.

5. REFERENCES

[1] M. Petrov, A. Talapov, T. Robertson, A. Lebedev, A. Zhilyaev,
and L. Polonskiy, “Optical 3D digitizers: Bringing life to the
virtual world,” IEEE CG&A, vol. 18, no. 3, pp. 28–37, May/Jun
1998.

[2] O. D. Faugeras, Three-Dimensional Computer Vision: A Geo-
metric Viewpoint, MIT Press, 1993.

[3] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms,” IJCV, vol.
47, no. 1, pp. 7–42, Apr. 2002.

[4] M. Shimizu and M. Okutomi, “Sub-pixel estimation error can-
cellation on area-based matching,” IJCV, vol. 63, no. 3, pp.
207–224, July 2005.

[5] C. D. Kuglin and D. C. Hines, “The phase correlation image
alignment method,” Proc. Int. Conf. on Cybernetics and Society,
pp. 163–165, 1975.

[6] K. Takita, T. Aoki, Y. Sasaki, T. Higuchi, and K. Kobayashi,
“High-accuracy subpixel image registration based on phase-
only correlation,” IEICE Trans. Fundamentals, vol. E86-A, no.
8, pp. 1925–1934, Aug. 2003.

[7] K. Takita, M. A. Muquit, T. Aoki, and T. Higuchi, “A sub-
pixel correspondence search technique for computer vision ap-
plications,” IEICE Trans. Fundamentals, vol. E87-A, no. 8, pp.
1913–1923, Aug. 2004.

[8] N. Uchida, T Shibahara, T. Aoki, H. Nakajima, and
K. Kobayashi, “3D face recognition using passive stereo vi-
sion,” Proc. of the 2005 IEEE ICIP, pp. II–950–II–953, Sept.
2005.

[9] M. A. Muquit, T Shibahara, and T. Aoki, “A high-accuracy
passive 3D measuremet system using phase-based image match-
ing,” IEICE Trans. Fundamentals, vol. E89-A, no. 3, pp. 686–
697, Mar. 2006.

(b)

(d)

(e) 

(a)

(c) 

Fig. 5. Reconstructed 3D face data: (a) stereo images, and recon-
structed 3D data by (b) 1D POC, (c) 2D POC, (d) SAD and (e) SSD.
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